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A Cost-Efficient 3D Sensing System for
Autonomous Mobile Robots

Marco A. Gutiérrez, E. Martinena, A. Sanchez, Rosario @dfiyuez, P. Nlfiez.

Abstract— This paper describes a mechanism for building  The lack of good, cheap and fast sensors allowing robots
an inexpensive and, at the same time, accurate system for 3Dto sense the environment in real-time, in order to allow
scanning on Autonomous Mobile Robots. Our system allows us them to act on the basis of acquired data, is one of the

to obtain 3D points from the robot environment along with its .

associated color. This data can be later processed using fdifent reasons 9f the gap between prognoses and reality. S_everal
techniques in order to obtain information from surrounding Commercial accurate 3D LRF systems are already available
objects useful for tasks such as navigation or localization in the market. However, most of them have usually a high
Information is obt.ained at a rate of 50 ms per line of scan cost ¢~ 50.000USD). This way, we have developed a 3D
(700 points per line). In order to use the sensor as part of genging system for Autonomous Mobile Robots. It consists
an active perception system, resolution is made to be diregt

dependent on the scanning speed and robots are able to adjust,on a 2D, LRF moved by a step motor, a camera for texture
the related parameters accordingly to their needs. Our appoach information and an embedded system that manages the other
uses a regular commercial 2D Laser Range Finder (LRF), a three components. Although this managing choice could limi
step motor and a camera, all this controlled by an embedded in some way, the whole system it has been chosen that way
circuit which makes the system apt for being built in any pecayse it is intended to be used in Autonomous Mobile
regular Autonomous Mobile Robot. Finally, to test our systen,
two different real applications have been used. First a 3D Mp Ro_b_ots and t_hey have a strong needs for small Ef‘n(_j power-
reconstruction is done using several point clouds matchedyb €fficient sensing systems. The embedded system is in charge
the ICP algorithm and our odometry. Then, we make a novelty of directly moving the step motor, acquiring informatioorn
detection and 3D shape retrieval using the Gaussian Mixture the LRF and the camera, collecting the 3D data and sending
Model and Superquadrics. it over the network for its processing, storage or visuditira

Index Terms—Autonomous Mobile Robots, 3D Shape retrieval,  This paper is organized as follows. In section Il we talk

Mapping, Laser Range Finder, RGB-D about some previous works in the field. Our 3D sensing system
is deeply explained in Section Ill, its hardware components
l. INTRODUCTION and how the data is processed. Then we test our system

Sensing and processing the unknown environment is cruaising two different applications in Section 1V. First buiid
for Autonomous Mobile Robots to obtain information froma 3D map of the robot environment using the Iterative Closest
their surroundings. Most of the actions a mobile robot couldoint (ICP) algorithm and the odometry information, and
achieve, such as mapping, localization, exploration ori-nathen detecting changes on 3D maps applying the Gaussian
gation, have strong dependences on the information ofatairdixture Model and retrieving shapes from detected objects
from their environment. Hence, the task of properly acagiri using superquadrics. Finally, in Section V we present some
and processing this information has became a critical needconclusions and future work directions.
the mobile robotics field.

In order to obtain this information Autonomous Mobile
Robots, can use different sensing systems to achieve data.
Cameras are one of the most common used interfaces t@utonomous Mobile robots have a strong need of 3D
obtain environment data. They have been widely studied aménging sensors. Therefore researchers have been imghasi
therefore several algorithms are available to achieve dvoifiocusing efforts in this field, and, as a consequence, groups
modeling. For this reason, not only direct information isvno have came up with different approaches to obtain 3D points
obtained from cameras, other, such as depth, can be estimated shapes from the environment.
following several methods [1], [2], [3], [4], however most The relative low cost of cameras have made these systems
of these solutions have a necessity for texture informatiovery common. Therefore, using cameras to obtain 3D infor-
Therefore, these algorithms have a strong dependency loin ligmation has been a widely spread research effort. In order to
variations and wouldn’t work properly in indoors environmt& obtain depth information from images the number of cameras
specially those with surfaces not uniformly colored. LREsed have changed along the different studies. The most
(Laser Range Finder) solutions provide a more accurateehopopular solution is using two cameras (Binocular Stereo),
in terms of precision and environmental dependency. Howyevaostly inspired in the way humans obtain depth perception
they lack from texture information when it is available. from their environment. Several groups have done intensive

5 , , , works on these systems [2] [3] [4]. But also other number
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used. However, these systems are highly dependent ondextur
information. This makes them to, usually, loose accuracgmwh
facing indoor environments. In the same way, most of the time
these solutions have high computational costs with big powe
requirements and a small field of view (usually’50

In order to solve the lack of texture dependency the use of
laser lines projection have taken into account [8]. Evenesom
RGB-D commercial sensors widely popular nowadays such
as the Primesense RGB-D sensor [20] make use of infrared
projection to reduce this texture need. Although solutiares
very popular, compared to LRF performance, they get small
fields of view, low depth precision (3cm in 3m scan) and high
sensibility to light variations.

Due to the price difference from commercial 2D LRF to
3D LRF, solutions to achieve the whole 3D spectrum with 2D
LRF systems have been explored. This has been done ether
making the 2D LRF scanner rotate itself [12] or rotating a
mirror in front of the it [13]. Some of these solutions even
include a camera for texture information retrieval [14]. On
our system, efforts have been not only focused on the LRF-
camera 3D system but also on managing it from an embedded
system in order to make it able for running on small and low
power consumption Autonomous Mobile Robots.

Finally, some other different 3D retrieval solutions arethio
to mention, like using a rotating camera and an angled LRF 2
[15] or even using camera shadows to construct Multiple
Virtual planes [11]. _—

(b)
IIl. SYSTEM DESIGN

To develop a complete sensing system that can cover mbi- 1: @) The 3D sensing system mounted on one of our
of the mobile robotic possible needs, a wide range of pdssibAutonomous Mobile RobotdRobex. The three main hardware
ties must be taken into account. Indoor or outdoor scenee mBarts are marked in the Figure (LRF (1), step motor (2),
or less light or uniformly or not uniformly colored objecteea RGB camera (3) and embedded system (4)) b) Sketch of the
some of the different aspects from the environment a robot ca€asurement system and associated reference frames.
face. Our device is made up in an effort to take into account
all these likelihoods, trying to get the best and more adeura
info out of each situational environment.

Our design is intended to be simple and low ces860CE). We use a Hokuyo LRF with a large scanning range (30

And although, some of the hardware could be cheaper (Iagé?ters and 27). It has been chosen that way so that we
is ~ 30002), it has been chosen that way due to our target n make scans ether indoor or outdoors with appropriated
’ accuracy, although the system is fully compatible with adtno

getting the most available information out of the surromgdi her 2D LRF The LRE i hed
a robot could find itself, while, at the same time keepin ny other T sensor. ihe LIRE 1S attached to a step
otor to make it scan the full 380in front of the mobile

it small and power-efficient to be deployed on Autonomo
Mobile Robotps ploy robot. The step motor has enough torque to move the LRF

without using any gear-train and, in consequence avoidiag t

backslash they usually introduce. It has 200 steps resoluti
A. Hardware and it is attached to a power driver to obtain a higher one, up

Our solution consists of three main hardware parts, showed25000 steps. Between the several ways of moving a laser

in Fig. 1. First, a commercial 2D LRF is moved by a stethat exist, we have chosen to do it in the Z axis, withO
motor (labeled as (1) and (2) on Fig. 1) to be able to obtain 3®egrees, as shown in Fig. 2. This is the solution that better fi
points from full 360 scans. Secondly, a camera (labeled (ur needs because it leads to high resolution of points int fro
on Fig. 1) is used in order to achieve texture feedback fram tbf the robot, exactly the place it is facing and most possibly
environment. When this information is made available, wee ato where it is moving [7]. This allows us to focus our density
able to attach color information to the correspondent poindistribution on certain objects, i.e. obstacles or new eleis
obtained from our LRF. And finally, an embedded systeintroduced in the environment [18]. The resolution we want
(labeled (4) on Fig. 1) that manages the rest of the compenettt achieve on the scan is directly dependent on the speed of
in the system. Fig. 1b shows a sketch of the system and the step motor. Therefore, our system is good to be used for
associated reference frames of some of the elements. active perception purposes since most of the resolutioeps k
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Fig. 4: Screenshoot of theanager Comp Robocomp tool. 1)

The 3D laser and the Camera running on the embedded system
2) The component in charge of the odometry running on the
robot 3) The process and display component running on a
Desktop system.

locally stored for later processing, or sent through thevoet
for live treatment, storage and/or display.

Fig. 3: Scans using different speeds, and therefore acigevi

different levels of resolution: a) 0.6 rad/s;25 lines of scan B. Data processing

b) 0.4 rad/s~50 lines of scan c) 0.2 rad/s;100 lines of scan
d) 0.1 rad/s,~200 lines of scan.

The software to control our system is built in on top of the
robotics frameworkkobocomp [5]. Making use of its compo-
nent oriented programming and its communication middlewar
we are able to minimize the CPU load in our embedded system
in front of the robot and is able to select the proper speéghving the heavy processing for the powerful desktop syste
for each scan, changing the resolution in consequence3Fig? light-weight camera component handler and another for the
shows different resolutions scans from our system, acegrdiLRF and the step motor are executed directly in the embedded
to selected speed and its approximated scan resolution. System (see (1) on Fig. 4), sending the data over the network

The Camera consists of a regular Web-Cam that providest@sother components running on desktop computers that will
with 640x480 images at a rate of 10 frames per second. Itmgke further data storage, analysis and/or display (seen(3)
kept statically on top of the LRF and the step motor facing tHed. 4). Thanks to the communication middleware the system
same space as the scanner in order to match the color piégigstitutes a generic component that can be used through its
from the camera with their correspondent 3D points from tHaterface:

LRF. The camera is USB connected to the embedded system
to make more accurate and real-time matching of the captions 1| interface Laser3D
and the 3D points. Both two sensors have different reference 2| {

: 3 void moveToAndSweepAtSpeed(oat
systems|rr and LRFrr(see sketch at Fig. 1b). Therefore, as minAng, float maxAng. float speed

mathematically shown in Section IlI-B, data informatioorfr bool once, int numScans, outint
the camera would be calibrated, that is, processed to match . . nStcan(S), outfloat period);
. . . - void stop();
Ithe LRF one. This process involves finding the transfornmatio 5| TLaserData getlLaserData():
RFTLreee (Fig. 1b). 6| Laser3DConfData getLaserConfData();
Finally, all these elements are controlled by our embedded 7|}

system. It has &NU/Linux distribution and severdtobocomp
[5] components on top of it. It takes responsibility for peoly
moving the step motor according to given instructions and,

therefore, assuring the required resolution. It makesutaic 1) Coordinate systems conversion: The 2D LRF returns
tions to retrieve the angles and data coming from the LRpoints in the Polar Coordinate System (Fig. 5a) that is, a
Besides, it captures images from the camera and assigris pixiéstancer and a polar angle or azimuth {(ri,¢i)| i= 1...n}.

to the corresponding 3D points. Then, information can BEhen, making use of the information coming from our step

Listing 1: Interface of thd.aser3D Robocomp Component
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(20/0)
COORDINATES
TRANSFORM
X

(G, Y5,Z5), (%,01)), i =1..n @)

Where every pointx;,y;) obtained from the image matches
the correspondingX®, Y-, Z") obtained from the LRF.

Following [6] we could conclude that using equation 5 we
can obtain a solution.

PROVIDED DATA EMBEDDED SYSTEM TRANSFORMATION

(a) (b) (c) Av=0 (5)
Fig. 5: Transformation from the LRF data to Cartesian Coor- WhereA is defined in equation 6 with an> 7, and being
dinates. the points not coplanar.

XXt xYf xiZb x1 —yiXE —yiYE —yiZh -
motor we obtain the inclination ang&of the LRF. This leaves . - . . . .
our coordinates expressed in the Spherical System (Fig 5bA =
having a radial distance, an azimuth anglep and an incli- . . S . . . .
nation angle®, {(ri,i,6)| i =1..n}. Then, data is finally XoXp XYy XnZy Xn —YoX§ — Yo —YnZ§ —Yn
converted into the Cartesian Systefitx;,yi,z)| i =1..n)} _ _ (6)
(Fig. 5¢c), using the following regular systems conversion This solution depends on a parameter or scale factor:

equation:
q Vi=r21 Vs=Arig

Vo=r2 Vg=Ar12

X =T 'S.nel cospi _ V=(V1V8) Q0 s Ve = Args )
yi=ri-sing cosg; , i=1l..n (1) Va=TX Vg=ATX
Z =i - CcosH,

Imposing the rotation matrix orthogonality we could de-

It is desired to keep the embedded system as much fteemine the mentioned matrix and two components of the
of CPU load as possible to assure a good real-time resportsagnslation vectol andYy. Then, to obtain the last component
However, since our inclination angk is directly dependent of the translation vectoil,, we only have to solve equation 8.
on the step motor movements information and we want to
preserve the system accuracy, it is unavoidable but to ex- B<TZ) —b (8)
ecute the polar system coordinates to the spherical system fx
transformation on our system. Therefore, transforms upéo t \Where:
spherical coordinates are processed on the embedded system
then data is sent over the network and the rest of the proxessi X1 (raaXp+ oY +risZf + Tx)
steps are computed on external and more powerful systems. . .
B=| . . 9)

2) Extrinsic 3D-LRF Camera Calibration: Camera image : .
data is also obtained. It comes in form of RGB matrix that is o (raXy + oYy +risZs + Tx)
matched to its correspondent laser points. For this magchin gng
Rotation (R) and Transformation (T) of those color points to
the laser reference frame must be performed [6]. In order —Xa(raiX{ + raaYy + raszk)
to calibrate our camera-LRF, calculation of proper R and .
T is needed. This R and T are needed to obtain the target b= . (20)
(XL, YL, Zb), therefore we can say: :
—Xn(raiXh + 1o +raszh)

X¢ Xt
veo| = R|YL] +T @) Then we obtairil; following:
z° z- 7
. (Z) = (B'B) 'B'b (11)
Where(X®, Y€ Z%) are points on the reference system of the fx

camera andX",Y",Z") the ones from the laser. Also writtenThis way we have obtained all the components of the corre-
as. spondent Rotation MatriR and Translation Vectof which
are used to transform the points from one system to the other
or, in the same way, assign the texture information to the 3D
laser points (see Fig. 1b).

Fig. 6 shows a scan of our lab taken aRfirad/sec of

We obtainn empirically known matching pair points in ourspeed (10 seconds per 36can). The image is shown at Fig.
LRF and camera, in the form: 6a and data points from the same scan at Fig. 6b. After, as

Xb = rgaXC 4 r1oYC 411376+ Ty
Y= 01X+ r120YC +rp3Z¢ + Ty 3)
Z- = r3aX®—+r3o¥C+r33Z2°+ T,



MARCO A. GUTIERREZ ET AL.: A COST-EFFICIENT 3D SENSING SYSMEFOR AUTONOMOUS MOBILE ROBOTS 5

3000

2500—

2000~

1500~

~"aoo0

IV. EXPERIMENTAL RESULTS

We have built our testing system using a Hokuyo UTM-
30LX 2D LRF. It has 30 meters and 270f scanning range.
The LRF scans 270at a rate of 25ms. However, we get the
scans at a speed of 50ms due to the use of our, in some
way, CPU limited embedded system. The 2D LRF is attached
to a CeNeCe 23HB56 step motor to achieve the whole 3D
spectrum. The motor has 200 steps and a 11 Kg/cm torque and
it is attached to a Leadshine DRP452 driver with 15 different
modes of resolution (from 1/2 to 1/125 steps). A Logitech
Quickcam Pro 9000 Web Camera is used to obtain texture
information from the environment. It gives us 640x480 imgage
at a rate of 10 FPS (Frames Per Second). This all is controlled
by our embedded system consisting of an ARM Cortex-A8
OMAP 3530 of 720 Mhz and 4G Mobile Low Power DDR
SDRAM @ 200 Mhz running an Ubuntu GNU/Linux System.
All of it is properly mounted and assembled irRobex, one
of our Autonomous Mobile Robots (see Fig. 1).

The software have been developed using Rabocomp
framework [5], which makes it easy to balance the work
load between the embedded system and other more powerful
ones. On the embedded system we have deployed two main
components, one for managing the step motor and laser system
and other for managing the camera. This data is served throug
the network to another external components running in more
powerful desktop machines. Then, as said, the collectitg da
component ether processes, stores or shows data for iefurt
analysis.

We have tested our 3D sensing system using two different
algorithms. First we have run a scan matching in an effort to
make a map of the environment of the robot. For this algorithm
we have tried obtaining different scans at different poifts
the room and then matching them using ether the ICP scan
matching algorithm [16] or odometry.

The second experiment consists of a novelty detection
on a 3D map and a subsequent shape retrieval of detected
novelty using superquadrics. We have used an algorithm that
simplifies the data using a multi-scale sampling techniaque i
order to reduce the computation time of detecting changes in
the environment. Then a method based on the Earth Mover's
Distance (EMD) and Gaussian Mixture Models (GMM) [18]
is used to detect changes and obtain a segmented point could
representing those changes. Finally the 3D shape of thetobje
is retrieved using a superquadric approximation to the tpoin
cloud.

Fig. 6: (a) Camera image from a scan in our lab (b) Poinfs Mapping
from our 3D LRF (c) Colored data form the scan after data Several tests in the mapping field have been performed. In

transformation.

explained, properly matching both data sets a result such

one of them, we have used the Chen-Medioni (point-to-plane)
framework for ICP (lterative Closest Point) [16]. Having a
collection of points(p;i,qi) with normalsn; this algorithm
tries to determine the optimal rotation and translation ¢o b
applied to the first collection of points, i.@; to bring them
into alignment with the secong}. It obtains a rotatiorR and
tfhslationt trying to minimize the alignment error:

the one shown in Fig. 6¢ is obtained. Notice that colored data
is not the whole 3D data from LRF, since the camera covers 2

' ) ; £= Rpi+t—q)-ni 12
a much smaller area than the LRF, as explained on Section II. ,Z[( P+t a)-n (12)
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Fig. 7: ICP Scan Matching using 24 different scans arfd9- 8: ICP Scan Matching using 31 different scans and
moving fromA to B an angle of8 < 0.2 rad per scan. moving fromA to B increasing the angle oved > 0.2 rad.

work Robocomp provides (see (2) in Fig. 4). We have done 31
gct,ans rotating an angle Bf= 0.2 rad one of our Autonomous
Mobile Robots (labeled on Fig. 9). This movement specially
Bbnfuses the ICP algorithm, and makes it almost impossible
. _ ) to make the match without using odometry. Therefore, making
from Fig 7 correspond to start and ending points of the sc lke of the obtained points, combined with the odometry, we
respectively. The Scan Matching has been colored on Sve performed the matching showed on Fig. 9. As you'can
values of the¥’ axis (height) in order to m.ake it more visuallysee results are much better than the ones we obtained with
understandable. Results seem to be gwte re_al and accurgtFCR Still an accumulated error on the final scan is showed by
After this 24 scans we started increasing the rotatiqfg req square, labeled b in Fig. 9b. This, as further exetain
between our scans overrad (B > 0.2 rad). Then we o, gection Vv, could be solved using for the mapping, along

experienced some error on the applied ICP algorithm, @ the 3D data, the texture information our system proside
shown in Fig. 8. It can be seen how walls of our scan start to

get deviated as we start increasing the angle of the movement

This could be due to the fact that the quality of alignmer®. Novelty Detection and 3D Shape Retrieval based on Gaus-

obtained by ICP depends heavily on choosing good pairs f@2n Mixture Models and superquadrics

corresponding points in the two cloud point [17]. Again,imisi  The second test we have performed on our system is in

A and B from Fig 8 correspond, respectively, to start anghe field of novelty detection and 3D shape retrieval. We

ending point of the complete scan. have used the Gaussian Mixture Model for novelty detection
Since ICP does not allow our robot enough freedom in itend superquadrics for the 3D shape retrieval [18]. There are

movements, we have performed a mapping implementatisome main steps in the algorithm: the multi-scale sampling

using odometry. To obtain the needed odometry informatido reduce computation burden; change detection based on

we have used thdifferentialRobot component that our frame- Earth’'s Mover Distance over the point cloud selections of

We have obtained 24 different scans moving the rob
around the lab and rotating it an anglk< 0.2 rad. Data
results from the scan matching are shown from two differe
points of view in Fig. 7a and in Fig 7b. Poin#s and B
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Fig. 9: Data Obtained from a scan in our lab using odometry.
Point A shows where the robot has rotated and the red square
the accumulated odometry error.

the Gaussian Mixture Model and a 3D shape retrieval of the
detected changes using superquadrics.

To perform our experiment we have used our system to scan
an empty room in our lab. Then a box have been added to
the scene in order to introduce a novelty on the environment. s
Fig. 10a shows the simplified point cloud (in black) and the : SR g
correspondent Gaussians associated to the big concentediti " T""’“
points on the empty room, Fig. 10b shows the scene containing - ’ Z°°
the novelty, labeled as (1). Then Gaussians from the first sca (d)

are compared to those on the second one and matched using L . . .
the Earth Mover's Distance EMD. The novelty usually shows'd- 10: (a) Simplified point cloud and associated Gaussians

up as an unmatched Gaussian as it is the only thing that Waﬁf’tempty room (b) Si_mplified point cloud and associated
there before (labeled (1) in Fig. 10c). Gaussians of room with a npvelty (c_) Selected novelty_ on

After selecting the correspondent novelty we have retdevéhe SeCOI‘(ljd. sfcan ahnd aSS(I)C|ate|d po(:;nt (?Iou? (g) Retrieved
a superquadric and place it on the same place as the box whperquadric from the novelty selected point cloud.

The idea of this is to retrieve the 3D shape of the object that
was representing the obtained point cloud, in this case a box
Fig. 10d shows a superquadric corresponding to the novelty
detected by the previous steps of the algorithm.

This shape retrieval is important in order to provide the
mobile robot with a geometric idea of the objects it is facing

°
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