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A Cost-Efficient 3D Sensing System for
Autonomous Mobile Robots

Marco A. Gutiérrez, E. Martinena, A. Sánchez, Rosario G. Rodrı́guez, P. Núñez.

Abstract— This paper describes a mechanism for building
an inexpensive and, at the same time, accurate system for 3D
scanning on Autonomous Mobile Robots. Our system allows us
to obtain 3D points from the robot environment along with its
associated color. This data can be later processed using different
techniques in order to obtain information from surrounding
objects useful for tasks such as navigation or localization.
Information is obtained at a rate of 50 ms per line of scan
(700 points per line). In order to use the sensor as part of
an active perception system, resolution is made to be directly
dependent on the scanning speed and robots are able to adjust
the related parameters accordingly to their needs. Our approach
uses a regular commercial 2D Laser Range Finder (LRF), a
step motor and a camera, all this controlled by an embedded
circuit which makes the system apt for being built in any
regular Autonomous Mobile Robot. Finally, to test our system,
two different real applications have been used. First a 3D Map
reconstruction is done using several point clouds matched by
the ICP algorithm and our odometry. Then, we make a novelty
detection and 3D shape retrieval using the Gaussian Mixture
Model and Superquadrics.

Index Terms—Autonomous Mobile Robots, 3D Shape retrieval,
Mapping, Laser Range Finder, RGB-D

I. I NTRODUCTION

Sensing and processing the unknown environment is crucial
for Autonomous Mobile Robots to obtain information from
their surroundings. Most of the actions a mobile robot could
achieve, such as mapping, localization, exploration or navi-
gation, have strong dependences on the information obtained
from their environment. Hence, the task of properly acquiring
and processing this information has became a critical need in
the mobile robotics field.

In order to obtain this information Autonomous Mobile
Robots, can use different sensing systems to achieve data.
Cameras are one of the most common used interfaces to
obtain environment data. They have been widely studied and,
therefore several algorithms are available to achieve world
modeling. For this reason, not only direct information is now
obtained from cameras, other, such as depth, can be estimated
following several methods [1], [2], [3], [4], however most
of these solutions have a necessity for texture information.
Therefore, these algorithms have a strong dependency on light
variations and wouldn’t work properly in indoors environments
specially those with surfaces not uniformly colored. LRF
(Laser Range Finder) solutions provide a more accurate choice
in terms of precision and environmental dependency. However,
they lack from texture information when it is available.
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The lack of good, cheap and fast sensors allowing robots
to sense the environment in real-time, in order to allow
them to act on the basis of acquired data, is one of the
reasons of the gap between prognoses and reality. Several
commercial accurate 3D LRF systems are already available
in the market. However, most of them have usually a high
cost (∼ 50.000USD). This way, we have developed a 3D
sensing system for Autonomous Mobile Robots. It consists
on a 2D LRF moved by a step motor, a camera for texture
information and an embedded system that manages the other
three components. Although this managing choice could limit,
in some way, the whole system it has been chosen that way
because it is intended to be used in Autonomous Mobile
Robots and they have a strong needs for small and power-
efficient sensing systems. The embedded system is in charge
of directly moving the step motor, acquiring information from
the LRF and the camera, collecting the 3D data and sending
it over the network for its processing, storage or visualization.

This paper is organized as follows. In section II we talk
about some previous works in the field. Our 3D sensing system
is deeply explained in Section III, its hardware components
and how the data is processed. Then we test our system
using two different applications in Section IV. First building
a 3D map of the robot environment using the Iterative Closest
Point (ICP) algorithm and the odometry information, and
then detecting changes on 3D maps applying the Gaussian
Mixture Model and retrieving shapes from detected objects
using superquadrics. Finally, in Section V we present some
conclusions and future work directions.

II. PREVIOUS WORKS

Autonomous Mobile robots have a strong need of 3D
ranging sensors. Therefore researchers have been increasingly
focusing efforts in this field, and, as a consequence, groups
have came up with different approaches to obtain 3D points
and shapes from the environment.

The relative low cost of cameras have made these systems
very common. Therefore, using cameras to obtain 3D infor-
mation has been a widely spread research effort. In order to
obtain depth information from images the number of cameras
used have changed along the different studies. The most
popular solution is using two cameras (Binocular Stereo),
mostly inspired in the way humans obtain depth perception
from their environment. Several groups have done intensive
works on these systems [2] [3] [4]. But also other number
of cameras such as three [1], one (monocular cameras) [9] or
even only using unsorted collections of images [10], have been
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used. However, these systems are highly dependent on texture
information. This makes them to, usually, loose accuracy when
facing indoor environments. In the same way, most of the time,
these solutions have high computational costs with big power
requirements and a small field of view (usually 60◦).

In order to solve the lack of texture dependency the use of
laser lines projection have taken into account [8]. Even some
RGB-D commercial sensors widely popular nowadays such
as the Primesense RGB-D sensor [20] make use of infrared
projection to reduce this texture need. Although solutionsare
very popular, compared to LRF performance, they get small
fields of view, low depth precision (3cm in 3m scan) and high
sensibility to light variations.

Due to the price difference from commercial 2D LRF to
3D LRF, solutions to achieve the whole 3D spectrum with 2D
LRF systems have been explored. This has been done ether
making the 2D LRF scanner rotate itself [12] or rotating a
mirror in front of the it [13]. Some of these solutions even
include a camera for texture information retrieval [14]. On
our system, efforts have been not only focused on the LRF-
camera 3D system but also on managing it from an embedded
system in order to make it able for running on small and low
power consumption Autonomous Mobile Robots.

Finally, some other different 3D retrieval solutions are worth
to mention, like using a rotating camera and an angled LRF
[15] or even using camera shadows to construct Multiple
Virtual planes [11].

III. SYSTEM DESIGN

To develop a complete sensing system that can cover most
of the mobile robotic possible needs, a wide range of possibili-
ties must be taken into account. Indoor or outdoor scenes, more
or less light or uniformly or not uniformly colored objects are
some of the different aspects from the environment a robot can
face. Our device is made up in an effort to take into account
all these likelihoods, trying to get the best and more accurate
info out of each situational environment.

Our design is intended to be simple and low cost (∼3500e).
And although, some of the hardware could be cheaper (laser
is ∼ 3000e), it has been chosen that way due to our target of
getting the most available information out of the surroundings
a robot could find itself, while, at the same time keeping
it small and power-efficient to be deployed on Autonomous
Mobile Robots.

A. Hardware

Our solution consists of three main hardware parts, showed
in Fig. 1. First, a commercial 2D LRF is moved by a step
motor (labeled as (1) and (2) on Fig. 1) to be able to obtain 3D
points from full 360◦ scans. Secondly, a camera (labeled (3)
on Fig. 1) is used in order to achieve texture feedback from the
environment. When this information is made available, we are
able to attach color information to the correspondent points
obtained from our LRF. And finally, an embedded system
(labeled (4) on Fig. 1) that manages the rest of the components
in the system. Fig. 1b shows a sketch of the system and the
associated reference frames of some of the elements.

Fig. 1: a) The 3D sensing system mounted on one of our
Autonomous Mobile Robots,Robex. The three main hardware
parts are marked in the Figure (LRF (1), step motor (2),
RGB camera (3) and embedded system (4)) b) Sketch of the
measurement system and associated reference frames.

We use a Hokuyo LRF with a large scanning range (30
meters and 270◦). It has been chosen that way so that we
can make scans ether indoor or outdoors with appropriated
accuracy, although the system is fully compatible with almost
any other 2D LRF sensor. The LRF is attached to a step
motor to make it scan the full 360◦ in front of the mobile
robot. The step motor has enough torque to move the LRF
without using any gear-train and, in consequence avoiding the
backslash they usually introduce. It has 200 steps resolution
and it is attached to a power driver to obtain a higher one, up
to 25000 steps. Between the several ways of moving a laser
that exist, we have chosen to do it in the Z axis, withα=0
degrees, as shown in Fig. 2. This is the solution that better fits
our needs because it leads to high resolution of points in front
of the robot, exactly the place it is facing and most possibly
to where it is moving [7]. This allows us to focus our density
distribution on certain objects, i.e. obstacles or new elements
introduced in the environment [18]. The resolution we want
to achieve on the scan is directly dependent on the speed of
the step motor. Therefore, our system is good to be used for
active perception purposes since most of the resolution is kept
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Fig. 2: LRF and step motor rotating scheme.

Fig. 3: Scans using different speeds, and therefore achieving
different levels of resolution: a) 0.6 rad/s,∼25 lines of scan
b) 0.4 rad/s,∼50 lines of scan c) 0.2 rad/s,∼100 lines of scan
d) 0.1 rad/s,∼200 lines of scan.

in front of the robot and is able to select the proper speed
for each scan, changing the resolution in consequence. Fig.3
shows different resolutions scans from our system, according
to selected speed and its approximated scan resolution.

The Camera consists of a regular Web-Cam that provides us
with 640x480 images at a rate of 10 frames per second. It is
kept statically on top of the LRF and the step motor facing the
same space as the scanner in order to match the color pixels
from the camera with their correspondent 3D points from the
LRF. The camera is USB connected to the embedded system
to make more accurate and real-time matching of the captions
and the 3D points. Both two sensors have different reference
systems,IRF andLRFRF (see sketch at Fig. 1b). Therefore, as
mathematically shown in Section III-B, data information from
the camera would be calibrated, that is, processed to match
the LRF one. This process involves finding the transformation
IRF TLRFRF (Fig. 1b).

Finally, all these elements are controlled by our embedded
system. It has aGNU/Linux distribution and severalRobocomp
[5] components on top of it. It takes responsibility for properly
moving the step motor according to given instructions and,
therefore, assuring the required resolution. It makes calcula-
tions to retrieve the angles and data coming from the LRF.
Besides, it captures images from the camera and assigns pixels
to the corresponding 3D points. Then, information can be

Fig. 4: Screenshoot of themanagerComp Robocomp tool. 1)
The 3D laser and the Camera running on the embedded system
2) The component in charge of the odometry running on the
robot 3) The process and display component running on a
Desktop system.

locally stored for later processing, or sent through the network
for live treatment, storage and/or display.

B. Data processing

The software to control our system is built in on top of the
robotics frameworkRobocomp [5]. Making use of its compo-
nent oriented programming and its communication middleware
we are able to minimize the CPU load in our embedded system
leaving the heavy processing for the powerful desktop systems.
A light-weight camera component handler and another for the
LRF and the step motor are executed directly in the embedded
system (see (1) on Fig. 4), sending the data over the network
to other components running on desktop computers that will
make further data storage, analysis and/or display (see (3)on
Fig. 4). Thanks to the communication middleware the system
constitutes a generic component that can be used through its
interface:

1 i n t e r f a c e Laser3D
2 {
3 vo id moveToAndSweepAtSpeed (f l o a t

minAng , f l o a t maxAng , f l o a t speed ,
boo l once , i n t numScans , ou t i n t

nScans , ou t f l o a t p e r i o d ) ;
4 vo id s t o p ( ) ;
5 TLaserData g e t L a s e r D a t a ( ) ;
6 Laser3DConfData ge tL aserCon fDa ta ( ) ;
7 }

Listing 1: Interface of theLaser3D Robocomp Component

1) Coordinate systems conversion: The 2D LRF returns
points in the Polar Coordinate System (Fig. 5a) that is, a
distancer and a polar angle or azimuthϕ

{

(ri,ϕi)| i = 1...n
}

.
Then, making use of the information coming from our step
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Fig. 5: Transformation from the LRF data to Cartesian Coor-
dinates.

motor we obtain the inclination angleθ of the LRF. This leaves
our coordinates expressed in the Spherical System (Fig 5b),
having a radial distancer, an azimuth angleϕ and an incli-
nation angleθ ,

{

(ri,ϕi,θi)| i = 1...n
}

. Then, data is finally
converted into the Cartesian System

{

(xi,yi,zi)| i = 1..n)
}

(Fig. 5c), using the following regular systems conversion
equation:











xi = ri · sinθi cosϕi

yi = ri · sinθi cosϕi

zi = ri · cosθi

, i = 1...n (1)

It is desired to keep the embedded system as much free
of CPU load as possible to assure a good real-time response.
However, since our inclination angleθ is directly dependent
on the step motor movements information and we want to
preserve the system accuracy, it is unavoidable but to ex-
ecute the polar system coordinates to the spherical system
transformation on our system. Therefore, transforms up to the
spherical coordinates are processed on the embedded system,
then data is sent over the network and the rest of the processing
steps are computed on external and more powerful systems.

2) Extrinsic 3D-LRF Camera Calibration: Camera image
data is also obtained. It comes in form of RGB matrix that is
matched to its correspondent laser points. For this matching
Rotation (R) and Transformation (T) of those color points to
the laser reference frame must be performed [6]. In order
to calibrate our camera-LRF, calculation of proper R and
T is needed. This R and T are needed to obtain the target
(XL,Y L,ZL), therefore we can say:





X c

Y c

Zc



= R





XL

Y L

ZL



+T (2)

Where(X c,Y c,Zc) are points on the reference system of the
camera and(XL,Y L,ZL) the ones from the laser. Also written
as:

XL = r11X c + r12Y c + r13Zc +Tx

Y L = r21X c + r22Y c + r23Zc +Ty

ZL = r31X c + r32Y c + r33Zc +Tz

(3)

We obtainn empirically known matching pair points in our
LRF and camera, in the form:

((XL
i ,Y

L
i ,Z

L
i ),(xi,yi)), i = 1...n (4)

Where every point(xi,yi) obtained from the image matches
the corresponding(XL

i ,Y
L
i ,Z

L
i ) obtained from the LRF.

Following [6] we could conclude that using equation 5 we
can obtain a solution.

Av = 0 (5)

WhereA is defined in equation 6 with ann ≥ 7, and being
the points not coplanar.

A =













x1XL
1 x1Y L

1 x1ZL
1 x1 − y1XL

1 − y1Y L
1 − y1ZL

1 − y1

. . . . . . . .

. . . . . . . .

. . . . . . . .
xnXL

n xnY L
n xnZL

n xn − ynXL
n − ynY L

n − ynZL
n − yn













(6)
This solution depends on a parameter or scale factor:

V = (v1, ...,v8)















v1 = r21 v5 = λ r11

v2 = r22 v6 = λ r12

v3 = r23 v7 = λ r13

v4 = T x v8 = λ Tx

(7)

Imposing the rotation matrix orthogonality we could de-
termine the mentioned matrix and two components of the
translation vectorTx andYy. Then, to obtain the last component
of the translation vector,Tz, we only have to solve equation 8.

B

(

Tz

fx

)

= b (8)

Where:

B =













x1 (r11XL
1 + r12Y L

1 + r13ZL
1 +Tx)

. .

. .

. .
xn (r11XL

n + r12Y L
n + r13ZL

n +Tx)













(9)

and

b =













−x1(r31XL
1 + r32Y L

1 + r33ZL
1)

.

.

.
−xn(r31XL

n + r32Y L
n + r33ZL

n )













(10)

Then we obtainTz following:
(

T̂z

f̂x

)

= (BtB)−1Btb (11)

This way we have obtained all the components of the corre-
spondent Rotation MatrixR and Translation VectorT which
are used to transform the points from one system to the other
or, in the same way, assign the texture information to the 3D
laser points (see Fig. 1b).

Fig. 6 shows a scan of our lab taken at 0.2πrad/sec of
speed (10 seconds per 360◦ scan). The image is shown at Fig.
6a and data points from the same scan at Fig. 6b. After, as
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Fig. 6: (a) Camera image from a scan in our lab (b) Points
from our 3D LRF (c) Colored data form the scan after data
transformation.

explained, properly matching both data sets a result such as
the one shown in Fig. 6c is obtained. Notice that colored data
is not the whole 3D data from LRF, since the camera covers
a much smaller area than the LRF, as explained on Section II.

IV. EXPERIMENTAL RESULTS

We have built our testing system using a Hokuyo UTM-
30LX 2D LRF. It has 30 meters and 270◦ of scanning range.
The LRF scans 270◦ at a rate of 25ms. However, we get the
scans at a speed of 50ms due to the use of our, in some
way, CPU limited embedded system. The 2D LRF is attached
to a CeNeCe 23HB56 step motor to achieve the whole 3D
spectrum. The motor has 200 steps and a 11 Kg/cm torque and
it is attached to a Leadshine DRP452 driver with 15 different
modes of resolution (from 1/2 to 1/125 steps). A Logitech
Quickcam Pro 9000 Web Camera is used to obtain texture
information from the environment. It gives us 640x480 images
at a rate of 10 FPS (Frames Per Second). This all is controlled
by our embedded system consisting of an ARM Cortex-A8
OMAP 3530 of 720 Mhz and 4G Mobile Low Power DDR
SDRAM @ 200 Mhz running an Ubuntu GNU/Linux System.
All of it is properly mounted and assembled intoRobex, one
of our Autonomous Mobile Robots (see Fig. 1).

The software have been developed using theRobocomp
framework [5], which makes it easy to balance the work
load between the embedded system and other more powerful
ones. On the embedded system we have deployed two main
components, one for managing the step motor and laser system
and other for managing the camera. This data is served through
the network to another external components running in more
powerful desktop machines. Then, as said, the collecting data
component ether processes, stores or shows data for its further
analysis.

We have tested our 3D sensing system using two different
algorithms. First we have run a scan matching in an effort to
make a map of the environment of the robot. For this algorithm
we have tried obtaining different scans at different pointsof
the room and then matching them using ether the ICP scan
matching algorithm [16] or odometry.

The second experiment consists of a novelty detection
on a 3D map and a subsequent shape retrieval of detected
novelty using superquadrics. We have used an algorithm that
simplifies the data using a multi-scale sampling technique in
order to reduce the computation time of detecting changes in
the environment. Then a method based on the Earth Mover’s
Distance (EMD) and Gaussian Mixture Models (GMM) [18]
is used to detect changes and obtain a segmented point could
representing those changes. Finally the 3D shape of the object
is retrieved using a superquadric approximation to the point
cloud.

A. Mapping

Several tests in the mapping field have been performed. In
one of them, we have used the Chen-Medioni (point-to-plane)
framework for ICP (Iterative Closest Point) [16]. Having a
collection of points(pi,qi) with normals ni this algorithm
tries to determine the optimal rotation and translation to be
applied to the first collection of points, i.e.pi to bring them
into alignment with the secondqi. It obtains a rotationR and
translationt trying to minimize the alignment error:

ε = ∑
i
[(Rpi + t − qi) ·ni]

2 (12)
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Fig. 7: ICP Scan Matching using 24 different scans and
moving fromA to B an angle ofβ ≤ 0.2 rad per scan.

We have obtained 24 different scans moving the robot
around the lab and rotating it an angleβ ≤ 0.2 rad. Data
results from the scan matching are shown from two different
points of view in Fig. 7a and in Fig 7b. PointsA and B
from Fig 7 correspond to start and ending points of the scan,
respectively. The Scan Matching has been colored on the
values of theY axis (height) in order to make it more visually
understandable. Results seem to be quite real and accurate.

After this 24 scans we started increasing the rotation
between our scans over 0.2 rad (β ≥ 0.2 rad). Then we
experienced some error on the applied ICP algorithm, as
shown in Fig. 8. It can be seen how walls of our scan start to
get deviated as we start increasing the angle of the movements.
This could be due to the fact that the quality of alignment
obtained by ICP depends heavily on choosing good pairs for
corresponding points in the two cloud point [17]. Again, points
A and B from Fig 8 correspond, respectively, to start and
ending point of the complete scan.

Since ICP does not allow our robot enough freedom in its
movements, we have performed a mapping implementation
using odometry. To obtain the needed odometry information
we have used thedifferentialRobot component that our frame-

Fig. 8: ICP Scan Matching using 31 different scans and
moving fromA to B increasing the angle overβ ≥ 0.2 rad.

work Robocomp provides (see (2) in Fig. 4). We have done 31
scans rotating an angle ofβ = 0.2 rad one of our Autonomous
Mobile Robots (labeledA on Fig. 9). This movement specially
confuses the ICP algorithm, and makes it almost impossible
to make the match without using odometry. Therefore, making
use of the obtained points, combined with the odometry, we
have performed the matching showed on Fig. 9. As you can
see results are much better than the ones we obtained with
ICP. Still an accumulated error on the final scan is showed by
the red square, labeled b in Fig. 9b. This, as further explained
on Section V, could be solved using for the mapping, along
with the 3D data, the texture information our system provides.

B. Novelty Detection and 3D Shape Retrieval based on Gaus-
sian Mixture Models and superquadrics

The second test we have performed on our system is in
the field of novelty detection and 3D shape retrieval. We
have used the Gaussian Mixture Model for novelty detection
and superquadrics for the 3D shape retrieval [18]. There are
some main steps in the algorithm: the multi-scale sampling
to reduce computation burden; change detection based on
Earth’s Mover Distance over the point cloud selections of
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Fig. 9: Data Obtained from a scan in our lab using odometry.
Point A shows where the robot has rotated and the red square
the accumulated odometry error.

the Gaussian Mixture Model and a 3D shape retrieval of the
detected changes using superquadrics.

To perform our experiment we have used our system to scan
an empty room in our lab. Then a box have been added to
the scene in order to introduce a novelty on the environment.
Fig. 10a shows the simplified point cloud (in black) and the
correspondent Gaussians associated to the big concentration of
points on the empty room, Fig. 10b shows the scene containing
the novelty, labeled as (1). Then Gaussians from the first scan
are compared to those on the second one and matched using
the Earth Mover’s Distance EMD. The novelty usually shows
up as an unmatched Gaussian as it is the only thing that wasn’t
there before (labeled (1) in Fig. 10c).

After selecting the correspondent novelty we have retrieved
a superquadric and place it on the same place as the box was.
The idea of this is to retrieve the 3D shape of the object that
was representing the obtained point cloud, in this case a box.
Fig. 10d shows a superquadric corresponding to the novelty
detected by the previous steps of the algorithm.

This shape retrieval is important in order to provide the
mobile robot with a geometric idea of the objects it is facing.

Fig. 10: (a) Simplified point cloud and associated Gaussians
of empty room (b) Simplified point cloud and associated
Gaussians of room with a novelty (c) Selected novelty on
the second scan and associated point cloud (d) Retrieved
superquadric from the novelty selected point cloud.
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The GMM and superquadrics approach tested here seems quite
interesting and challenging. However in our opinion further
works are needed since it seems still highly dependable on
thresholds and too slow with large datasets, at least if it wants
to be used for real-time processing.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented the construction of a 3D sensing
system for Autonomous Mobile Robots consisting in a Cam-
era, a 3D LRF and an embedded system. It is intended to
be small and power efficient without giving up performance.
We have tested our system retrieved data with two different
algorithms obtaining promising results. Certainly the step mo-
tor combined with the 2D LRF constitutes a solid alternative
to those expensive commercial solutions. Data is acquired
accurately and fast enough while keeping the low-cost and
autonomous requirements. Also, texture information is prop-
erly attached to the points coming from the LRF in order
to get more information for data processing algorithms. The
public interface provided by the communication middleware
makes the whole system become a real hardware component,
accessible externally through the network. The API offered
by the laser component, provides methods to actively scan the
world with variable precision.

For the mapping, scan matching using ICP and odometry
has been performed. Results are good but still depend on the
point cloud provided for ICP, making the algorithm sensible
to high changes between scans. Making use of texture in-
formation [19] or even making it a real-time mapping with
small changes between consecutive scans could constitute a
good upgrade for this experiment. In the novelty detection
and 3D shape retrieval field the used algorithms (GMM and
superquadrics) seemed promising. However, we found some
trouble detecting certain point clouds, probably because these
algorithms seem highly sensible to thresholds. They, also
where very intensive in CPU and memory. Again adding
texture information to the algorithm might be a choice, al-
though this could make the application not suitable for real-
time use due to a high CPU load. The 2D LRF makes scans
at a speed up to 25ms, although our system still retrieves
data at a speed of 50ms. This is caused by the embedded
processor’s CPU whose limited performance still constitutes
a bottleneck. New and more powerful ARM processors with
multicore architecture have already been announced by Texas
Instruments. They are expected for the next few months and
will probably solve this problem.

Finally, texture information is attached to the laser through
the manual calibration process from section III-B2, another
interesting improvement could be to develop an automatic way
of finding these camera-laser data correspondences.
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