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Abstract— In this paper, we propose a SPAM (Simultaneous
Planning and Mapping) technique for a manipulator type robot
working in an uncertain environment via a Best Next Move
algorithm. Demands for a smart decision to move a manipulator
such as humanoid arms in uncertain or crowded environments
call for a simultaneous planning and mapping technique. We
assume no a priori knowledge of either the obstacles or the
rest of the environment exits. For rapid map building and
path planning, we use a skin type setup based on 3D depth
camera sensors that completely encompass the entire body of a
manipulator. The 3D sensors capture the point clouds used to
create an instantaneous c-space map whereby a Best Next Move
algorithm directs the motion of the manipulator. The Best Next
Move algorithm utilizes the gradient of the density distribution
of the k-nearest-neighborhood sets in c-space. It has tendency
to travel along the direction by which the point clouds spread
in space, thus rendering faster mapping of c-space obstacles.

The proposed algorithm is compared with several sensor
based algorithms for performance measurement such as map
completion rate, distribution of samples, total nodes, etc. Some
improved performances are reported for the proposed algo-
rithm. Several possible applications include semi-autonomous
tele-robotics planning, humanoid arm path planning, among
others.

I. INTRODUCTION

Motion planning in unknown environments is a chal-
lenging problem in path planning. Sensor based approaches
have been the dominant trends in the study of unknown
environment planning for decades. When it comes to un-
known environment planning, a planner calls for continuous
perception and planning, thereby closing the loop between
sensation and actuation. Due to the limited sensing distance
of most of the depth sensor or visual occlusion, only the
local area is known to the robot for local path planning. No
optimum global path generation idea is reported so far due to
the uncertainty innate by an unknown environment. However,
if a planner can produce a global map rapidly, optimum path
planning is feasible in unknown environment.

Sequential mapping of a local area and path planning is
a natural step for sensor based motion planning. In [1], a
novel framework for an unknown environment path planning
of a manipulator type robot is proposed. The framework
described in [1] is a sensor based planner composed of a
sequence of multiple MBPs (Model Based Planners) in the
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Fig. 1. IPA sensor installation on a three Degrees Of Freedom (3-DOF)
robotic linkage

notion of cognitive planning using realtime rehearsal. C-
space Entropy is examined in [2] for planning and explo-
ration for a robot with an eye-in-hand sensor system. Natural
planning and expanding steps of the c-space is repeated
in the paper for an unknown environment path planning
algorithm. However, the eye-in-hand sensor has limitation
in reporting collision or c-space mapping in realtime due to
visual occlusion.

Other studies in sensor based planning of manipulators
include [3] whereby an avoidance ability of a redundant
manipulator is studied with a moving camera on the ceiling.
In [4], trajectory planning for a redundant mobile manip-
ulator is studied using avoidance manipulability concept.
Manipulability is the point of study for best path selection
in multiple available configurations with singularity and
manipulability ellipsoid. In [5] and [6], kinematic analysis in
local or global motion planning for a manipulator has been
studied in the notion of singularity for a redundant robot
as well. Topological analysis in conjunction with singularity
concern for a redundant manipulator is dealt with the study
on critical point surfaces in configuration space. In summary,
the result in the paper implies that a manipulator has to stay
in a continuous c-sheet to avoid singularity, which means that
a motion planning with inverse kinematic concern is neither
robust nor efficient due to the limited utility of a given c-
space.

As a result, majority of the manipulator planning schemes
we investigated are either hindered by the sensor configu-
ration or by motion constraints for a realtime manipulator
motion planning especially for a crowded unknown envi-
ronments. More flexible sensor configurations for maximum
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coverage in conjunction with a supportive planning algorithm
is, therefore, in essential need.

To that end, we propose a skin type sensor made out
of cameras with 3D depth sensing capability to tackle an
unknown environment manipulator motion planning problem
(see 1 for a 3-DOF robot example). Our approach is a
probabilistic path planning with Simultaneous Planning and
Mapping, thus SPAM. For rapid map building and path plan-
ning, we use the skin type sensors that completely encompass
the entire body of a manipulator. Such sensor can generate
realtime point clouds of obstacles from any posture of the
robot; thereby a realtime local c-space construction becomes
feasible. However, an appropriate guidance algorithm of the
robot in global motion planning is of utmost importance for
maximum exploration and convergence capability. To that
end, we envision a 3D point cloud registration method a
possible guidance algorithm for manipulatorś motion.

3D point cloud registration calls for various descriptors for
object recognition [7]. We take advantage of such registration
processes to propose a guidance method of a manipulator in
a partially constructed c-space environment. Amongst many
registration methods, is the Group Averaging Features, an
invariant feature for point cloud registration [8], in which a
gradient of the density distribution is used to log essential
points for 3D shape identification.

We discuss rationale of why and how we utilize the steps
of the invariant feature extraction method for sensor based
motion planning in Section II. We discuss results of the
comparison between simulations of the proposed algorithm
and another sensor based planning algorithm in Section III.
Map completion rate, distribution of samples, and total nodes
are measured for comparison. Section IV shows a real device
used to validate the proposed method. Finally in section
V improved performances are reported for the proposed
algorithm along with some lines of interesting future work.

II. BEST NEXT MOVE PLANNER

Due to the higher order complexity of the manipulator type
robot path planning, probabilistic sampling based search is
common in general. Several sampling based path planners
are reported to be a complete planner so that they either find
a path or terminate otherwise. Manipulator path planning in
unknown environment, however, is challenging in that neither
the path optimality nor the plannerś completeness can be
guaranteed.

Gradual but rapid construction of the c-space map, if
feasible, allows a planner to complete a mission in path
search with higher probability. C-space mapping especially
in a crowded environment is the most daunting task in manip-
ulator path planning though. In [9], Best Next View (BNV)
in conjunction with a sensor-based roadmap planner is used
for object mapping in unknown environment. Utilization of
BNV in the object recognition in an unknown environment
is through the concept of detecting key events in the set of
range data such as discontinuity of the range data in the
scene. These key events are used to drive the global motion

of the manipulator to reduce the ignorance level of the given
workspace.

Similarly, we propose the Best Next Move algorithm as
a guidance strategy of the robotś global motion in uncertain
environment. By the BNM algorithm, the local motion in
each step is designed to reveal the maximum environmental
map possible. We use the point cloud registration scheme
in [8] as the best next move strategy since it calls for rapid
point cloud identification and collection of a 3D shape.

When it comes to unknown environment manipulator mo-
tion planning, two subjects have to be addressed in parallel:
map construction and navigation for convergence. We con-
sider map construction and goal convergence as two separate
tasks for unknown environment manipulator planning. The
more complete c-space map a planner generates, the better
chance of convergence to the goal achieved. To that end,
objectives of motion strategy are set such that:

1) Rapid map construction stage: steering global motion
to build a maximum environment map

2) Goal convergence stage: achieving search complete-
ness

For the first objective we propose a combinatory motion
planning of sampling based search and the point cloud
registration inspired approach to determine the Best Next
Move (BNM) of the global motion. Best Next Move is the
direction possibly to collect maximum information of c-space
obstacles.

Group Average Feature (GAF) method, one of the 3D
point cloud registration methods is designed to search point
cloud sets to register the uniqueness of a 3D object as on
[8]. With the sensitive skin type sensor, we can construct
a workspace of the robot in realtime and map out the c-
space obstacle instantaneously. That workspace will then
correspond to the point cloud data obtained by the collision
shield developed around the robotic manipulator at a certain
point of time. First we collect point cloud data by 3D depth
sensors attached on the manipulator.

In order to maximize the benefit of the GAF point cloud
registration scheme, we propose a directional navigation of
the point automaton in c-space similar to the kernel function
to extract features. To that end, for a given Pc (workspace
point cloud) at an instance, we propose a virtual c-space
sensor model with which, the point automaton in c-space
senses c-space obstacles. The virtual sensor in c-space is
assumed to have a sensing range, r, and FOV (Field of View),
θ , thus it forms a hyper conical sensing range in n-DOF c-
space (see Figure 2).

The sensitive skin-setup of sensors covers the entire body
of a manipulator, meaning that we can obtain 3D point data
all around the robot manipulator. Thanks to that, a collision
shield is formed and point clouds of all the obstacles in the
workspace at a time t will be collected such that:

Pt
s :=

{
pi

j ∈ R| j = 1, ...,N
}

(1)

where, pi
j is the point cloud from sensor j situated at
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Fig. 2. Algorithm 1&2 at a glance

link i, R is the workspace, N is the total number of point
clouds collected by all sensors. Therefore Ps constitutes the
set of all point clouds obtained by the robotic manipulator
installed sensors at time t. For a given set of joint space
variables θ1,θ2, ...,θn, that define a certain configuration
of the manipulator, the forward kinematic model provides
transformation matrix such that:

Ti =

[
Ri ti
0 1

]
(2)

where, Ri is the rotational matrix and t i is the translational
vector for each ith link respectively. Then by the forward
kinematics, Pt

w , the point cloud of the collision shield at a
certain time t in the workspace coordinate, becomes:

Pt
w =

N⋃
j

pi
j ∗Ti (3)

Finally, Pt
w becomes the set of points formed by all the

points from the sensors point clouds at time t translated
and rotated by its corresponding ith link Ti matrix to the
workspace generic coordinates. An example of this in a two
link manipulator is shown at Figure 3

For a given point cloud set, Pt
w, at an instance, we create a

local c-space map in realtime using RRT (Rapid expanding
Random Tree), one of probabilistic sampling algorithm, such
that Pt

w
RRT→ Pc, so that:

Pc :=
{

pn ∈Ck|n = 1, ...,M
}

(4)

where, C is the c-space for the robot, k the degree of freedom
of the c-space, and M is the number of point clouds produced
by the mapping process.

Now we define an ‘intensity function’ X : Ck → C indi-
cating the presence of the point in c-space. We choose to

Fig. 3. Two link manipulator showing the relationship between the set of
point clouds Pt

s and the final resulting one, Pt
w

represent the point set Pc as the sum of overlapping Gaussian
distributions. The function X at point p ∈ Pc is defined as:

X(p) = ∑
i

exp
−
(
‖pi−p‖

σG

)2

(5)

The gradient of the X is then:

OX(p) =
−2
σ2

G
∑

i
(pi− p)exp

−
(
‖pi−p‖

σG

)
(6)

To get an intuition for the meaning of the density gradient,
please refer to [8]. For point cloud registration, they further
develop kernel functions for object identification. We use
the most dominant gradient vector as a guidance to direct
the global motion of the point automaton in c-space. Then
the planner will steer the point automaton along the most
dominant gradient to maximize exploration capability, thus
rapidly searches c-space obstacles. The planner may look
similar to potential field planner because it steers the robot
along the gradient of the cloud density. However, it is
different in that it does not always move away from the
obstacle, but it has tendency to travel along the direction by
which the point clouds spread in space, thus faster mapping
of c-space obstacles possible.

The point cloud data, then, becomes following:

pi = [xi,yi,zi,OXi]
T (7)

Total framework of the proposed SPAM cycle is shown in
Figure 4. Note that no inverse kinematic solution is necessary
for the planner, thus the algorithm is simple and robust.
Detail algorithm of c-space mapping is shown in Algorithm
1.

σd in Algorithm 1 is the Standard Distance Distribution
as shown in Equation 8. Λn, occupied c-space or a collection
of c-space point clouds at step n will be added to the c-space
point clouds, Pn

c , at the end of each mapping loop.
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Algorithm 1: c-space mapping
// Initialize RRT tree for expansion:
Λn←∅;
T n

RRT ←∅;
// workspace point clouds:
Pn

w← Pn−1
w ∪∑

n
i=1
(
Pi

s ·Ri + t i);
do while σd(Λn)> δΛ do

grow T n
RRT forward OXn(Pd);

pc← a branch grown from T n
RRT ;

// if robot collides with workspace
point cloud:

if BROBOT (pc)∩Pn
w 6= 0 then

// Collect c-space point cloud:
Λn← Λn∪ pc;
remove pc from T n

RRT ;
end

end
// Update c-space point cloud:
Pn

c = Pn−1
c ∪Λn;

return (Pn
c ,T n

RRT );

σd =

√
1
N

N

∑
i=1

(θi−θmean)2 (8)

Collision check takes place in the virtual workspace by
comparing BROBOT (Pc), the workspace occupied by the robot
model, and Pn

w, the point clouds of workspace obstacles.
Detail algorithm of Path planning is shown in Algorithm
2.

The condition of the while loop provides the search com-
pleteness of the algorithm via space filling. Search continues
until either the goal is found, or SDD of the free c-space is
too dense (< σT ), thus no more exploration is meaningful.

Fig. 4. SPAM cycle

The SPAM cycle is composed of two parallel processes
with 5 main functions (See Figure 4). In c-space mapping,
main area of work is to convert the workspace point clouds
into c-space point clouds by RRT (Rapid growing Random
Tree). In a virtual environment, a robot will move by RRT
algorithm and whenever collision occurs with a point cloud,
the robotś configuration will be sampled and stored as a c-
space point cloud data. Based on the registered c-space point
clouds in the mapping process, the BNM path planner will
guide the robot to the direction obtained by the gradient of
the intensity function. Intuitive operation of the algorithm is

Algorithm 2: BNM path planning
qi← initial location for nth expansion;
TRRT ←∅;
Pc←∅;
do while σd(TRRT )> σT do

if min d(q.,Pc)< ε then
// a path has been found!
return success

else
// N: number of point cloud in Λn
for i← 1 to N do

OX(p)← −2
σ 2

G
∑i(pi− p)exp

−
(
‖pi−p‖

σG

)2

;
end
OXn(pd)← OXn(p)|minp∈Λn d(qi,Λn);

end
if ‖qi+1−qi‖< ε then

// jump to a new free conf with min
density distribution

qi+1 = q|minq∈C f X(q);
else

// initial location for next expansion
qi+1 = q|maxq∈Λn d1(q,qi);

end
call Algorithm1();
// Update RRT Tree
TRRT ← TRRT ∪T n

RRT ;
Pc← Pc

⋃
Pn

c ;
end

shown in Figure 3. As shown in Figure 3, the BNM algorithm
has a tendency of directing the point automaton to glide along
the surface of c-space objects. This tendency allows rapid
search of an object surface so that a systematic unknown
environment explorations is feasible.

III. SIMULATION RESULTS

In order to test the proposed algorithm, we setup a 2 DOF
revolutionary link robot as a testbed for simulation. Two
algorithms are tested for comparison: Sensor-based RRT (see
[1] for more detail) and BNM algorithm, introduced in this
paper. Using the algroithms the system will try to find a
path in an unknown environment with different obstacles in
order to reach a certain target. The same sensor model and
workspace configurations are applied on both algorithms.

Figures 5(a) and 5(b) show the result of the path search for
RTT and BNM respectively. The steps that the robot makes
in the different algorithms is shown figures 6(a) and 6(b).
For 30 runs of each simulation some statistics are shared
in table 1. Total search time is the time in seconds from
the beginning to the end of the search operation. No. of Pc
stands for the total number of c-space point clouds generated
during the search period. The Mapping efficiency in Table 1
is a measure of how efficiently the algorithm generates the
c-space map of a given environment. This measure is useful
and important since rapid and complete map generation is the
key strategy in SPAM in unknown environments. The more
information we obtain about the unknown environment, the
better the planner can plan a path converging to the goal
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(a)

(b)
Fig. 5. a) Sensor-based RRT algorithm; b) Sensor-Based BNM algorithm.
Each red dot reperesent a point cloud obtained by the 3D sensors.

point. We define the mapping efficiency such that:

Mapping e f f iciency =
% o f map built

No. o f point clouds in cspace
(9)

With the sensor-based RRT algorithm, about 45% of the
c-space map is constructed upon termination, see figure 5(a)
for a visual overview and table I for quantified data. Figure
6(a) shows the different positions the robot takes following
the RRT algorithm. As milestone in workspace reveals, in
the latter figure, overlapping occurs densely in certain areas.

To the contrary, in the second test, BNM algorithm demon-
strated about 82% of the c-space construction before the
termination (see figure 5(b) and table I). In the magnified
window on the right, one can see the red dots that depict 12th
k-nearest neighborhood by which the surface of the c-space
obstacle is identified. If the window is carefully examined,
there are two vectors that show the directions of the gradient
of density function. Figure 6(a) shows the milestones in
workspace for the robot. You can appreciate that they are
more evenly distributed over the entire workspace as a result.

As a summary, overall search time of the sensor-based

(a)

(b)
Fig. 6. Milestones in workspace for robot movement by Sensor based: a)
RRT algorithm; b) BNM algorithm. Position in blue is the starting postion
while the black one is the final position, in which the robot reaches the target.
Black dots are the obstacles randomly placed in the unknown environment.

TABLE I
SIMULATION RESULTS

Algorithm Total time No. of Pc Mapping efficiency
S-RRT 6205 sec. 1201 45%
BNM 3134 sec. 1144 82%

RRT planner is about twice as much as that of the BNM
algorithm. Another thing noticeable, upon the completion of
the path search, is the rate of environmental map completion.
If you look at figure 5(a) and figure 5(b) for comparison,
significantly more environmental map is revealed by the
BNM algorithm compared to that of Realtime-RRT planner.

IV. EXPERIMENTS

Two IPA sensors (see [10]) are installed on a manipulator
type robot to generate a collision shield around it follow-
ing the skin type sensor setup (Figure 1). Transformation
matrices for local coordinates to the global coordinate for
each camera configuration have been setup using Equation
1. The robot tries to reach an object, set as goal, through the
unknown environment where an obstacle (a big white box)
has ben placed. In Figure 7, the robot stops and takes depth
map from each sensor, by which a workspace point cloud

5277



Fig. 7. Point cloud registration with depth data from sensor #1 and sensor
#2

is generated. With the point cloud map, BNM kicks in to
generate a c-space point cloud map as shown in Figure 8.
Now the robot is guided along the intensity gradient for the
next step generating the maximum environment map until it
reaches the goal point (Figure 9).

Fig. 8. C-Space point cloud registration by RRT expansion + path planning

V. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a SPAM (Simultaneous Plan-
ning and Mapping) technique for a manipulator type robot
working in an uncertain environment via a Best Next Move
algorithm. Motivation is in that better map construction
capability assures higher success ratio for the convergence
to the goal. BNM algorithm offers a means for SPAM of
the manipulator planning in uncertain environments thus
improving mapping and planning at the same time. For rapid
map building and path planning, we use a 3D depth camera
based skin type sensors setup that completely encompass
the entire body of a manipulator. Captured cloud points by
3D sensors create an instantaneous c-space map whereby a
Best Next Move algorithm guides the global motion of the
manipulator. We proposed mapping efficiency as a measure
of SPAM capability. The proposed BNM algorithm demon-
strated up to 82% mapping efficiency in average of 30 runs.
As shared in Table 1, BNM not only creates a c-space map
with higher mapping efficiency, but also it directs the point

Fig. 9. Robot reaches the goal via BNM algorithm

automaton to the goal twice as faster as the sensor based RRT
algorithm. We also implemented the BNM algorithm with a
sensitive skin sensor setup equipped two linkage manipulator
for verification in a real world. Realtime workspace point
cloud generation capability from 3D depth sensor data is
demonstrated for SPAM technique as well.

The need for the FOV of the camera to cover the entire
range of a link could be avoided. Further development of
the algorithm in order to make it able to work with less and
more spread sensors might end up in great improvements.
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