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Abstract—In this paper we present an approach for creating
complete shape representations from a single depth image for
robot grasping. We introduce algorithms for completing partial
point clouds based on the analysis of symmetry and extrusion
patterns in observed shapes. Identified patterns are used to
generate a complete mesh of the object, which is, in turn, used for
grasp planning. The approach allows robots to predict the shape
of objects and include invisible regions into the grasp planning
step. We show that the identification of shape patterns, such
as extrusions, can be used for fast generation and optimization
of grasps. Finally, we present experiments performed with our
humanoid robot executing pick-up tasks based on single depth
images and discuss the applications and shortcomings of our
approach.

I. INTRODUCTION

The ability to grasp and manipulate objects is an impor-

tant skill for autonomous robots. Many important tasks, e.g.,

assisting humans in household environments, require robots

to reliably plan and execute grasps on surrounding objects.

To generate plans for manipulation tasks, information about

the shape of the object is required. A frequent approach to

grasp planning is to use a database of polygonal meshes

representing the different objects that the robot can manipulate

[8]. Such information about object geometry can be used by

grasp planners to synthesize an appropriate hand shape and

orientation for physical interaction. While this approach is

valid for structured domains with a small set of different

objects, it does not scale to unstructured environments in

which many objects may have never been seen before.

Other approaches to grasp planning employ depth cameras

to acquire 3D point clouds of new objects, which in turn are

used to generate grasps. Since the point clouds are acquired

from a specific perspective, they only hold partial shape

information about the visible frontal part. Using only partial

point clouds to plan manipulation tasks can be very limiting,

since many grasps involve placing fingers on opposite sides of

an object. To fill any gaps and produce a complete point cloud,

multiple images can be acquired by either iteratively moving

the camera or the object. This process is time-consuming and
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Fig. 1: Extracted information of rotational symmetries in the

object is used to create a complete shape from a partial point

cloud. The generated mesh is used by a grasp planner to

generate a continuous set of grasps around the symmetry axis.

introduces new challenges such as the precise matching of the

individual point clouds of each view.

Alternatively, the robot can use geometric cues to predict the

shape of the object in unseen regions. Through the analysis

of inherent shape properties such as mirror symmetries and

rotational extrusions, estimates of the complete point cloud

can be generated from a single image. The extracted symmetry

parameters can be used to extend observed shape patterns, e.g.,

the profile curve of an object, to occluded regions.

In this paper, we show how compact object representa-

tions for manipulation tasks can be generated from a partial

point cloud. Given a single RGB-D image, we generate

a complete mesh model of the observed object as well

as additional shape information, e.g., axis of symmetry or

superquadric approximations. We show that these compact

representations can be later exploited for the fast synthesis

of a continuous set of grasps. In turn, the set is used to

plan robot manipulation tasks. Our approach builds both upon

recent developments in symmetry-based [3, 18], as well as

extrusion-based object representations [16]. Symmetry-based

representations mirror observed object parts into occluded

regions. Extrusion-based approaches, on the other hand, try



to identify a two-dimensional profile which can be linearly

or rotationally extruded to complete an object. In this work

we show how symmetries and extrusions can be used to

extract two different types of object representations, namely

superquadric approximations and 2D shape profiles. We also

show how these representations can used to generate grasps

on the object.

The rest of this paper is organized as follows: Section

II summarizes relevant literature. Section III introduces two

compact object representations that are based on detecting

symmetries and extrusions. Section IV shows how compact

object representations based on extrusion patterns can be

exploited for fast grasp planning with a small number of

parameters. Section V presents experimental results of the

object completion, as well as its application to robot grasping

tasks. Finally in Section VI we discuss our approach and its

advantages and shortcomings.

II. RELATED WORK

For a robot to physically interact with its environment,

algorithms for both grasp planning and perception are required.

Traditional approaches for grasp generation are often based

on fitting 3D CAD models to the observed scene [14, 15].

Such an approach, however, cannot be used to grasp novel

objects since it requires accurate, prior knowledge about the

shape. With the advent of depth cameras, various researchers

have turned towards point cloud representations for perception

and grasp planning. Huebner et al. [11] showed that bounding

boxes computed from point clouds can be used to grasp novel

objects. In a similar vein, Jiang et al. [12] proposed a so-

called grasping-rectangle representation which can be used

to infer the best grasp parameters given an RGB-D image

of a novel object (given an offline training step). Przybylski

et al. [21] showed simulation results in which a medial axis

representation of objects can be used to find successful grasps

without compromising on the approximation quality. Other

than boxes and spheres [17], superquadrics [9] have also been

considered for grasping applications given their compactness

and ability to represent many diverse shapes with a limited

number of parameters. Recently, Duncan et al. presented a

fast hierarchical approach to fit superquadrics online [5].

On the side of grasp generation, a popular metric used to

predict grasp robustness is the ǫ metric proposed by Ferrari

and Canny [6]. While many popular grasp generators, such

as GraspIt! use this metric to evaluate and refine the grasp

search, it has been noted [4] that a grasp with a good metric

does not translate to a robust grasp in a real-world execution.

Researchers such as Hsiao [10] and Balasubramanian [1] have

shown that grasps obtained using simple human heuristics can

produce comparable or even better results when evaluated in

a real, non-simulated environment.

A real world scenario - contrary to a simulated one -

presents its own set of challenges: errors in perception, control

and modeling must be considered and might render an optimal

simulated grasp into an infeasible one. Regarding incomplete

perceptual information, such as one-view point clouds for a

given object, Bohg et al. [3] proposed a simple approach that

exploits the symmetry of most common household objects to

predict the full shape of an object on a tabletop scenario.

Following Bohg’s observation that most common household

objects present similar characteristics (such as symmetry,

extrusion-like geometry and primitive shapes), we use them

to approximate the shape of objects. This is also useful in the

event of occlusion, in which a complete point cloud is not

available.

III. GENERATING COMPACT OBJECT REPRESENTATIONS

FROM SINGLE RGB-D IMAGES

In this section, we present two compact representations of

objects that can be generated from partial point clouds. These

representations can be used to plan grasps on objects involving

regions of the point cloud that are currently invisible. As a

result, a wider range of grasps can be planned, including, for

example, side grasps which are based on an opposition of

fingers placed at the front (seen) and the back (unseen) of the

object.

We will first present a superquadric representation which is

based on determining symmetries in point clouds. After that,

we will turn towards a more detailed representation which

makes use of rotational symmetries and linear extrusions to

characterize an object.

A. Superquadric Representation

Superquadrics are a family of geometric shapes that can

represent a wide range of diverse objects. The equation de-

scribing superquadrics in their canonical form can be written

as
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where a,b,c are the scaling factors along the principal axes,

ǫ1 is the shape factor of the superquadric cross section in

a plane orthogonal to XY containing the axis Z, and ǫ2 is

the shape factor of the superquadric cross section in a plane

parallel to XY. If a general transformation is considered,

then the total number of parameters required to define a

superquadric is 11 (the 6 additional being the rotational and

translational degrees-of-freedom (DoFs) {x, y, z, ρ, ψ, θ}). By

minimizing the error between each point and the general

superquadric equation, a shape that best fits the point cloud

can be obtained:
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As mentioned in Section II, superquadrics have previously

been used to generate grasp configurations for simple objects

[2, 22]. Most of these approaches assume that the complete

shape of the object is given or that the parameters can

be learned beforehand. However, when working with depth

cameras this is not a reasonable assumption to make. In

recent work, Duncan et al. [5] presented a superquadric fitting



Fig. 2: An example for the superquadric fitting with symmetry

analysis (middle) and without it (bottom).

approach which uses a voxel representation to reduce the

computational complexity of the task. We found that this

approach worked well when the segmented point cloud of

the object had a good viewing point (i.e. the front, side

and top of the object were seen). For point clouds in which

only one side of the object was seen (i.e. only front), the

performance quickly deteriorated, producing fitting parameters

that in many cases exceeded greatly the original dimensions

of the objects. While this could be partially alleviated by hard-

coding limits in the dimension of the axes, this is not practical

when dealing with novel objects, for which we might not know

the dimensions beforehand.

Inspired by work presented by Bohg et al. [3], we added

an additional pre-processing step to the superquadric mini-

mization process. Instead of using the original point cloud as

input, we generated a mirrored version (see Fig. 2) by finding

an optimal symmetry plane perpendicular to the table where

the object resides (for more details of this process, please refer

to the original paper [3]).

B. Object Completion from Extrusions

Planning task-specific grasps requires information about

the complete shape of the object to be manipulated. Many

household objects are based on extrusions. Indeed many

modelling and manufacturing systems use linear and rotational

extrusions in a hierarchy to generate the models used for

manufacturing. Uncovering extrusions in partial point clouds

can therefore help to generate a complete point cloud from a

partial observation. In addition, this knowledge can be used to

create a large set of feasible grasps from which a planner can

Hypotheses Initial Estimation Optimization

Fig. 3: The three steps used for optimizing the axis of

extrusion. First, we generate hypotheses by analysing pairs of

points. The resulting estimates are used to produce an initial

estimate of the axis of extrusion. Finally, optimization is used

to improve the extrusion axis.

choose suitable candidates for task execution. For example,

detecting the axis of symmetry in a rotationally symmetric

object allows us to rotate any feasible grasp around this axis.

In this paper, extrusion detection is performed using a three-

step approach, see Fig. 3 for an overview of the approach using

rotational extrusions. In the first step, we use points from the

partial point clouds to generate hypotheses for the extrusion

axis. In the case of rotational extrusions, we randomly sample

pairs of points and use the normal of each point to create a

line. Each pair of lines is intersected and the resulting point

is used as a hypothesis for the axis of extrusion. Fig. 3 shows

an example for points sampled from a cylindrical object. To

account for noise, we use the midpoint of the line connecting

the closest points, in case the two lines do not intersect.

The collected hypotheses points are then used to create an

initial estimate of the axis of extrusion. To this end, we fit a

line into the set of hypotheses using linear least-squares. The

RANSAC [7] algorithm is further used to reduce the influence

of outliers. Given this initial estimate, we perform optimization

to produce a more accurate axis of extrusion. Specifically, we

use the dynamic hill climbing algorithm [23] to search for an

axis of extrusion which reduces the dispersion of points along

the profile of the object. In every iteration, the axis of extrusion

is used to rotate all points of the partial point cloud back onto a

plane. We then estimate the density of the points using a kernel

density estimator [20]. By maximizing the density using the

hill climbing algorithm, we can reduce the dispersion of the

projected points, thereby recreating the profile of the object.

However, performing a kernel density estimation in each step

of the optimization process is computationally expensive and

does not scale to large point clouds. The following method

is, therefore, a discrete approximation of the kernel density,

which produced accurate results in practice while at the same

time being fast.

We create an approximation of the kernel density estimator

by creating a grid over the projected point cloud. The number

of cells used in our experiments varied between 5 and 30

cells in each dimension. For each cell i ∈ {1, ..,M} we count

the number of points ci that lie within. We then calculate the

average of the differences to neighbouring cells j ∈ {1, .., N}.

The overall objective function of the optimization can be
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Fig. 4: Density estimation at different stages of optimization.

At the beginning of the optimization, the projected points are

highly dispersed. The axis of extrusion is then changed to

minimize the dispersion, such that the outer profile of the

object emerges as can be seen in iteration 50. On the right

side we can see the object to which the profile belongs.

written as
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j
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where E is the energy to be minimized. Fig. 4 shows three

iterations during the optimization of the axis of extrusion.

Dark areas correspond to regions of high density of points,

while lighter areas correspond to low density regions. In early

iterations, the estimate of the axis does not produce a clear

profile when points are projected (rotationally) onto a plane.

In iteration ten, we can see that high density regions start

forming. After fifty iterations, an approximate profile of the

object starts to emerge.

After optimization is finished, we regard the projected points

as the profile of the object and rotationally extrude them

around the axis of extrusion to generate a complete point

cloud. Fig. 5 shows a set of household objects, the recorded

depth images, as well as the reconstructed complete meshes.

Given the completed point cloud, we reconstructed the meshes

using Poisson surface reconstruction [13].

For the case of linear extrusions along an axis, a different

method for the estimation of the initial axis of extrusion needs

to be used. For linear extrusions, we compare the normal

vectors of pairs of points and generate a hypothesis if the

difference between the normals is below a threshold. The

resulting set of hypothesis can then be clustered, such that each

cluster represents a possible axis of extrusions. For example,

for a box, up to six clusters can be found.

Note, that in our approach we use a point cloud to represent

the profile of an extrusion. For revolute objects, the profile

defines the outer curve of the object, which can be rotated

around the axis of extrusion to generate the complete shape.

For linear extrusions, the cloud represents the basic 2D shape

which can be extruded to form the object. Fig. 6 shows the

extracted object profiles for objects with linear extrusions.

IV. USING COMPACT OBJECT REPRESENTATIONS FOR

GRASP PLANNING

Grasp planning greatly benefits from the completed point

clouds. A complete point cloud can be triangulated and used as

an input to existing grasp generation and planning algorithms.

In contrast to the partial point cloud, the completed and

triangulated mesh can be used to perform collision checks

Fig. 6: Extracted object profile for the linearly extruded

objects. The extracted profiles are used to create a complete

point cloud.

and evaluate grasp quality using existing metrics. In contrast,

traditional grasp quality metrics cannot be directly applied to

partial point clouds. Similarly, having a complete mesh allows

a grasp planner to evaluate a large variety of grasps, which can

then be pruned based on task constraints. However, generating

many grasps often involves repeated applications of grasp op-

timization methods which can be computationally demanding,

in particular in the presence of many degrees-of-freedom in

the robot arm and hand. Extracted shape information from

extrusions can be used to improve the efficiency of this process

by significantly reducing the number of degrees-of-freedom of

the problem.

The main insight of this section is that hand shapes during

object grasping are invariant to movements along the axis of

extrusion. As long as the robot hand moves along the axis of

extrusion, no expensive replanning of the hand shape is neces-

sary. In the case of linear extrusions, the robot hand can move

up and down the axis of extrusion without having to change

the hand shape. Similarly, in the case of rotational extrusions,

the hand can be rotated around the axis of extrusion. This

knowledge can be exploited during grasp generation in order to

turn each single detected grasp into a continuous set of grasps.

Subsequently, we present a specific example how information

about extrusions can be used to reduce the dimensionality and

complexity of a grasp re-planning task.

Fig. 7a shows a scenario, in which a grasp is executed

on a rotationally symmetric object. The grasp has a low

manipulability index which is not sufficient to achieve the task

constraints. Typically, this means that a new grasp and arm

pose needs to be planned, which involves (sampling-based)

optimization in the high-dimensional space of joint angles.

Given that the grasp is performed on a rotationally sym-

metric object, the grasp generation can be modeled as an

inverse kinematics problem where the goal is to determine

an arm configuration q that is collision free. The output is

constrained by the end-effector position on the object and the

corresponding inverse kinematics solution. The end-effector

pose x can be parametrized by (1) the rotation around the axis

of extrusion φ and (2) the distance along the axis of extrusion



Fig. 5: Reconstruction of rotationally symmetric household objects. The top row shows a photo of the object. The middle

row shows the corresponding depth image recorded using a Microsoft Kinect. The bottom row shows the completed mesh.

Reconstruction was performed from a single image through the analysis of extrusions.

α, x = pose(φ, α). The inverse kinematics solution q with a

7-DoF arm for an end-effector pose x can be parametrized by

an additional variable θ which represents the angle between

the wrist-elbow-shoulder plane and the ground, q = IK(x, θ).
At each iteration i, the new arm position is computed

using an updated grasp position from the parameter space

{φi−1 ± δφ, αi−1 ± δα} and the corresponding inverse kine-

matics parametrized by {θi−1 − δθ, θi−1, θi−1 + δθ}. Let P

represent the full space of the variables φ, α, and θ. The

algorithm iteratively updates these parameters by determining

which tuple leads to the maximum manipulability [19]. This

is realized by solving for the following objective

qi = argmax
{φ,α,θ}∈P

√

det(J(q)JT (q)) (4)

where q = IK(pose(φ, α), θ). The sequence in Fig. 7 shows

several snapshots during this optimization. In this scenario,

the robot grasps a rotationally symmetric bottle. The initial

random grasp sample in Fig. 7a yields a manipulability of

0.268 which is then improved in Fig. 7d leading to a value of

0.540. To optimize the manipulability, the planner iteratively

changes the grasp position on the robot with the φ and

α parameters, and the inverse kinematics parameter θ. This

optimization can be performed efficiently since, the high-

dimensional configuration space of the hand does not need

to be represented thanks to the extracted symmetries. Instead,

a three-dimensional space of parameters {φ, α, θ} ∈ P is used.

V. EXPERIMENTAL RESULTS

In this section, we present a set of experiments which

we conducted to evaluate the proposed approach. The first

set of experiments focuses on the complexity and accuracy

of point cloud completion when generating compact object

representations. The second set of experiments shows the

application of the approach to grasp planning on a humanoid

robot. The used humanoid robot is based on Schunk LWA3

arms with 7 DoF. A Schunk gripper with a maximum aperture

of 7cm was used. Partial point clouds were recorded using a

Microsoft Kinect camera.

A. Accuracy of Fit

We first analyzed the accuracy of fit of the two presented

compact object representations. For extrusions, we collected a

set of rotationally symmetric meshes from internet databases

from which we generated partial point clouds. We then cut

out a partial point cloud representing 30% of the data and

simulated Kinect-like noise by adding holes and noise to

the dataset. The partial cloud was then completed using the

extrusion detection methods from Sec. III-B. To measure the

accuracy, we compared the completed clouds to the original

mesh of the object. On average, the approach produced an

error (distance of points to mesh) of 2mm, where objects had

a diameter between 10 − 20cm. Analysis of the extrusions

required on average 200ms.

For superquadric fitting we conducted a similar experiment.

However, in this case we noticed larger variations in the

reconstructed shapes depending on the perspective of the

camera to the object. We therefore placed each object at one

of five different locations in front of the camera and measured

the run time of the algorithm including symmetry analysis and

without it. As depicted in Tab. I, the fitting time is shorter when

additional points are added via symmetry analysis. While this



Fig. 7: Grasp manipulability optimization along the axis of extrusion. Since the object is symmetric, the same hand configuration

can be rotated around the object (A-B, C-D). At the same time, the extra DOF in the inverse kinematics solution is also utilized

to maximize manipulability (B-C).

may seem unintuitive, we found that the superquadric shape

has more constraints when considering mirrored points. As

a result, the optimization process required for fitting quickly

settles on a good solution.

TABLE I: Comparison of fitting times

Object Input P1 P2 P3 P4 P5 Avg. Time

Apple
Symmetry 0.02 0.13 0.01 0.06 0.07 0.05s

Plain 0.14 0.17 0.06 0.06 0.06 0.098s

Milk
Symmetry 0.20 0.07 0.03 0.05 0.04 0.078s

Plain 0.42 0.56 0.27 0.53 0.06 0.368s

Jam
Symmetry 0.06 0.11 0.13 0.08 0.21 0.118s

Plain 0.08 0.29 0.10 0.08 0.11 0.132s

Raisins
Symmetry 0.29 0.25 0.31 0.14 0.27 0.252s

Plain 0.36 0.40 0.43 0.43 0.32 0.388s

Creamer
Symmetry 0.15 0.15 0.22 0.13 0.14 0.158s

Plain 0.65 0.09 0.39 0.26 0.29 0.336s

B. Robot Grasping Experiments

Next, we conducted an experiment in which a humanoid

robot was used to grasp household objects located in front of

it. We also placed several other objects as clutter on the table.

Given the depth image all objects were reconstructed using

compact object representations. After that, the robot planned

and executed grasps using the normal at a point as an approach

direction and the method described in Sec. IV for ensuring

manipulability and obstacle avoidance. We conducted trials

with 4 objects which were placed at 4 different locations on

the table. Each trial was repeated three times. A grasp was

regarded successful if the robot was able to lift the object.

Tab. II summarizes the results of the experiment. We can see

that the approach using superquadrics performs well on most

objects with the exeption of the roll. In contrast, the extrusion-

based approach seems to have difficulties with a specific

location (C3). Analyzing the robot executions, we found that

superquadric approach typically leads to approximate shapes

which are slightly larger than the original object. Hence,

the executed grasp includes a ”buffer” zone that allows it

to succeed in the presence of sensor and calibration noise.

Grasps planned for the shapes generated by the symmetry

detection, however, are tighly fit to the object. This often lead

to premature contact with the object during grasp execution.

In Tab. II we also see the number of different grasps found

using the two approaches. We can see that the symmetry based

approach leads to a larger number of different grasps, due

to the invariance along the axis of extrusion. Images of the

executed grasp and the experimental setup can be found in

Fig. 8.

TABLE II: Experimental results, 3 trials per object per location

Location Creamer Dove Roll Micro

Success

Extrusion

B4 100% 100% 0% 100%

C3 0% 0% 0% 0%

C4 100% 100% 100% 100%

SQ

B4 100% 100% 0% 100%

C3 100% 100% 66% 100%

C4 100% 100% 0% 100%

Grasps

Extrusion

B4 1040 900 1200 640

C3 800 400 2200 800

C4 1270 320 800 1020

SQ

B4 11 11 7 11

C3 7 3 1 7

C4 10 5 5 13

VI. DISCUSSION AND CONCLUSION

In this paper we introduced methods for generating compact

and complete object representations that are particularly useful

for robot grasping applications. The approach exploits natural

patterns found in many shapes, e.g., symmetries, linear extru-

sions, and rotational extrusions to generate a complete mesh

from a single depth image. We also showed that the extraction

of this information can be used to improve the efficiency and

quality of the grasp planning step. The work presented in

this paper can be seen as a first step towards shape priors

that can be used by a robot to generate hypotheses about the

shape of an object in invisible regions. Other cues, such as

curvature and texture may also be helpful in predicting the

complete shape from partial observations. At the moment the

introduced approach is limited to household objects, which

are often based on linear and rotational extrusions. However,

it can also be extended to work in a hierarchy to complete

more complex objects. In future work, we hope to investigate

this aspect in more detail.

The performed robot experiments showed that the approach

can be used to create a variety of grasps. In particular, we

can generate grasps that extend to parts of the object that are

not seen. This is in contrast to other methods which limit the

approach direction of the robot to the visible part of the object.

We have shown in the experiments that the method can be

used to reconstruct objects in a cluttered scene without prior



Fig. 8: Grasps on household objects generated via grasp planning on compact object representations. All objects on the table

were reconstructed. Objects that were not grasps were regarded as obstacles to be avoided during the manipulation task.

information. Yet, the additional information gained by creating

complete meshes also imposes additional requirements on the

accuracy of the robot controller. Planning grasps with more

accurate reconstructions of the observed object means that the

robot needs to be very precise in the task execution. So far,

we do not have a model of the inherent sensor and actuation

noise. We hope to investigate Bayesian approaches to object

fitting, which would allow us to use information about the

uncertainty during task execution.
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