
A Multimodal Control Architecture for Autonomous
Unmanned Aerial Vehicles

Marco A. Gutiérrez
Robolab, University of

Extremadura
Cáceres, Spain

marcog@unex.es

Luis Fernando D’Haro
HLT, I2R, A*STAR

Singapore
luisdhe@i2r.a-star.edu.sg

Rafael E. Banchs
HLT, I2R, A*STAR

Singapore
rembanchs@i2r.a-star.edu.sg

ABSTRACT
We present our preliminary work on a multimodal control ar-
chitecture that enables an operator to manage an autonomous
Unmanned Aerial Vehicle (UAV) through high level tasks in
an indoors environment. The intelligence embedded in our
architecture is able to decode these tasks into low level instruc-
tions that a UAV is able to execute. Our system allows the user
to operate the UAV through speech, text or keyboard/mouse
input, all presented in a web based graphical user interface
that can be accessed from any Internet powered device.

ACM Classification Keywords
Robotics Operator interfaces

Author Keywords
Unmanned Aerial Vehicles; Natural Language Understanding;
System Control; Visual Servoing;

INTRODUCTION
Research on autonomous UAVs has seen a huge growth along
the last few years. Latest hardware advances along with the
reduced costs of Micro-Aerial Vehicles (MAVs) have boost
research in the field along with its applications. The range of
UAVs applications and possibilities are currently very wide.
They can be used for different purposes such as emergency
management [4], wildlife monitoring [2], humanitarian relief
actions [3] and much more. While for some of these solutions
manual control is enough, others aim for more autonomous
UAV solutions.

Our approach presents the controller with a web based inter-
face that can be accessed from any device enabled with Internet
and a web browser (computer, cell phone, tablet, etc.). The
controller can communicate with the UAV through speech, text
or using command buttons on the interface. The web interface
also provides feedback through speech and visual elements
like the UAV’s camera along with tracking information. The
user can command the UAV to autonomously perform a set

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the au-
thor/owner(s).
HAI’16, October 4–7, 2016, Biopolis, Singapore.
ACM ISBN 978-1-4503-4508-8/16/10.
http://dx.doi.org/10.1145/2974804.2980522

of predefined high level tasks. Then the system architecture
will take care of the UAV planing while providing the proper
feedback to the controller so he can keep track of the correct
execution of the task finally reaching the required goal.

DESCRIPTION OF THE ARCHITECTURE

Figure 1. Drawing of the architecture of the system with its different
modules. Draw of the architecture of the system with its different mod-
ules.

As stated, the architecture is composed of several modules
implemented as one or more components of ROS. Following
we explain more details on the implementation of each of these
modules.

Web-based Graphical User Interface
The web based graphical user interface (see Figure 2) is used
as the system’s main point of communication with the end
user. During regular usage, controller can interact with the
system through natural language (either speech or text) to set
the UAV task; however it also offers the option to override the
high level tasks through specific buttons with direct access to
the drone low level commands for emergency purposes. Spe-
cific information on the UAV task execution is also provided
through different sensors information, camera image feedback
(with tracking augmented information) and natural language.

The web interface is connected to ROS by using the ros-
bridge_suit package which uses JSON strings messages to
communicate with ROS by means of a WebSocket connec-
tion between the browser and the ros server. In addition, it

107



Figure 2. This is a screenshot of the web interface used to manage hte
UAV. On the left you can see the sensors information while on the center
the camera image and the ASR result is displayed, finally on left side is
where the emergency-direct controls lay.

includes a JavaScript library that makes easy the creation and
integration with services, publishers and subscribers available
in ROS.

Finally, the interface communicates with the
“ardrone_autonomy" ROS driver [6] which provides an
interface to communicate with the official AR-Drone SDK
version 2.0.1 through ROS. This way, the interface can obtain
the UAV sensors’ information (e.g. cameras’ images, pressure,
temperature, altitude, speed, etc.) as well as it is able to
provide the user with the direct interface to override the
high level task through UAV-specific basic commands for
emergency purposes.

Dialog and System Manager
The Dialog and System Manager (DSM) is the module respon-
sible of establishing the current state in the dialog flow while
at the same time deciding what are the next high level actions
the UAV must perform based on the current input from the
user (and its interpretation given by the NLU module). This
checking is inspired in the human autonomic nervous system
(ANS), where critical tasks are performed independently, and
with higher priority, over the somatic nervous system (SNS)
in order to guarantee the correct functionality of the body.
For instance, the ANS is responsible for controlling the heart
movements, temperature, breathing, etc., while the SNS is
responsible for the voluntary moments. In the robot, the SNS
tasks are the ones defined for the developer to perform the
typical tasks to be done when interacting with the human users,
while the ANS tasks will be periodic checking of the robot
internal functionalities (e.g. power status, temperature, close
presence of humans, etc).

Examples of the tasks performed by the ANS module are the
control of the battery level and altitude; in this case, when
their current values trigger a predefined threshold the system
automatically notifies, through the speech and web interface,
to the controller in order to take the respective correction
measures (e.g. returning the UAV to abort the task and go to a
certain known and safe position).

Regarding the SNS tasks, the DSM module follows the states
and transitions defined by a state machine where the designer
must specify which are the different actions to be performed

by the task manager in each state and the conditions to jump
to a following state. In addition, the DSM is also responsible
to classify some messages coming from different modules in
the architecture and notify the user about the actions to be
done based on them. For instance, if the confidence score
of the speech recognition is below a given threshold then the
DSM sends a message to the TTS to inform the controller that
he needs to repeat or rephrase the utterance again. Another
example is when the UAV needs to notify the controller that it
reaches a certain position (i.e. detecting any of the markers).

Natural Language Understanding
The NLU module is responsible of providing an interpretation
of a given sentence (e.g. a human sentence typed in on a
textbox or recognized using an ASR) taking into account the
active set of grammars and rules for the current state of the
system.

It is based on the use of regular expressions that match a given
sentence with a set of predefined patterns. The use of regular
expressions provides a trade-off between accuracy, robustness,
maintenance and available resources. In addition, the capa-
bility of the system to switch between different general and
specific rules allows it to deal with the dynamic characteristics
of the human-computer interactions.

This module consists of two main parts. First, a Python inter-
face that is able to provide services and messages to other mod-
ules in the ROS-based framework. Then, a regular-expression
based engine which allows the designer to match the possible
set of natural language utterances spoken by the controller
into an internal representation that extracts the most impor-
tant concepts that can be obtained from the sentence and used
by the DSM. In order to make the parsing and definition of
the rules as flexible and robust as possible, the NLU handles
three different XML grammar files: one that specifies the ac-
tive grammars per state, another with the actual rules, and a
third file containing a list of word mappings that can be used
to reduce the verbosity level of the regular expressions (e.g.
defining the set label NUMBERS and its items, and using this
label to avoid writing all the possible numbers in the regular
expression); in addition, this mapping could also be used to
map specific words to internal codes or labels used for other
modules in the architecture (e.g. replacing the words: up,
above, roof, ceiling into a single internal word TOP). Figure 3
shows an reduced version of the regular expressions rules used
by the UAV. The figure shows an example of a basic pattern
(number 1), extracted slots (i.e. action, parameter, values)
and more complex rules (number 2) using internal mappings
(e.g. OBJECTS). Finally, this module also allows to atomize
complex sentences into more simple sequential rules.

UAV Task Manager
The UAV Task Manager module is the one in charge of braking
down the high level motion instructions coming from he DSM
into the low level commands that the PID can understand and
process to the UAV. Once the module gets a motion task from
the DSM it breaks it and issues the proper targets to the PID
module so the UAV can move towards its different positions
to achieve the goal. The complexity of this module is not very

108



Figure 3. Example of XML rules used by the NLU.

high but it is expected to grow as the motion tasks requested
to the UAV become more complicated in future developments.

Visual Servoing with markers
When localizing UAVs in GPS-denied environments, such as
indoors setups, external motion capture systems are usually
used, i.e. indoors ball catching [5]. Although there are other
solutions such as [1], this relies on the existence of texture in
the surroundings. Therefore we decided to create a markers
based visual servoing system to localize the UAV in our in-
doors environment since this would provide more robustness
and simplicity to the system.

This module uses a ros node that tracks the markers previously
set up in known locations through the scene. This position
is then received by the visual servoing node that computes
the location of the UAV within the indoors location. One
drawback of our system is that when the UAV does not see
any marker it cannot locate itself within the room, therefore
it enters a “tag-search mode”, where it rotates over the yaw
angle, ψ until it finds a new marker and its able to locate itself
again. Since, in our setup, there is at least one marker on each
wall the UAV is able to find a new marker in a reasonable
amount of time, therefore the time it is lost is actually very
small. Obviously the more markers you have in the setup the
less likely the UAV will be to get lost and the easiest for it to
relocate itself in the unlikely case that this happens.

Finally on this module an Extended Kalman Filter (EKF) in
order to make the markers detection more stable in time. We
had to add this improvement when we moved our tests to real
environments as the markers detection was not as constant as
in the virtual scenario.

Figure 4. Structure of the DNN used by the UAV to describe the scene
images.

PID
The PID controller is the one in charge of generating
the control signals that are sent to the UAV through the
“ardrone_autonomy" driver at a rate of 100Hz. We used a
similar approach of the controller described in [1]. The con-
trol signals define the proper roll φ̄ and pitch θ̄ angle, the yaw
rotational speed ψ̄ and the vertical velocity ¯̇z. All of them are
defined as a fraction of the values: 18◦ for roll and pitch, 90◦
for yaw speed and 2m/s for vertical velocity.

The PID will receive the UAV current position from the Visual
Servoing module pt = (x,y,z,φ ,θ ,ψ) and when a target posi-
tion is set pt = (x̆, y̆, z̆, ψ̆) by the UAV Task Manager, it will
apply a separate PID control to all four degrees of freedom.
The result is rotated to match the yaw orientation of the UAV.
The control gains where optimized experimentally and are set
as follows:

φ̄

θ̄

ψ̄

¯̇z

=

 Pr(ψ)

[
0.5(x̆− x)+0.32ẋ)
0.5(y̆− y)+0.32ẏ)

]
0.02(φ̆ −φ ])

0.6(z̆− z)+0.2ż+0.01
∫
(z̆− z)

 (1)

Where the current speed is denoted by vc = (ẋ, ẏ, ż) and Pr(ψ)
denotes a planar rotation by ψ .

Environment Description Module
The environment description module is the one in charge of
describing the UAV scenes. As user demand, the UAV will
describe the scene that it’s in front of him through the Text
to Speech (TTS) system. This could be a useful feature for
visually impaired people as they can get a description of what
is in front of he UAV without the need to actually see the
image.

The flow of scene description generation is as follows. When
a users makes a scene description request through the web
interface and the DSM identifies the task it requests the DNN
Image Description module for a description of the current

109



scene. Then the image is captured, the description is generated
and read to the user through the TTS system.

To generate this scene explanations the DNN image descrip-
tion module implements the Neural Image Caption model
(NIC) described in [7]. As figure 4 shows, this model uses a
Convolutional Neural Network (CNN) pre-trained for image
classification as image encoder. Then the last hidden layer
is of this network is used as an input to a Recurrent Neural
Network (RNN) decoder that generates the sentences.

CONCLUSIONS AND FUTURE WORK
We have described our preliminary work on a multimodal con-
trol architecture for autonomous UAVs. Our architecture pro-
vides a solid base to develop high level tasks on autonomous
UAVs. Our system is be ale to locate the drone and execute
human commanded autonomous tasks.

However since we would like to make our system suitable for
real applications, further work and testing would be needed
to achieve more complicated and robust high level tasks ex-
ecutions. We would like to have a more robust localization
system in order to avoid as much as we can the “getting lost"
situations. Also removing the markers will open our system
to higher and easier mobility. Since accurate indoors localiza-
tion for these systems remains an open challenge, this would
require further research and efforts trying out other possible
technologies.

Finally we would also like to test our architecture and the
future enhancements with more and improved UAVs as the
limitations imposed by the hardware in the current platform
restricts the possibilities of our applications.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of NVIDIA Corpora-
tion with the donation of the Jetson TX1 used for this research.

REFERENCES
1. Jakob Engel, JÃijrgen Sturm, and Daniel Cremers. 2014.

Scale-aware navigation of a low-cost quadrocopter with a
monocular camera. Robotics and Autonomous Systems 62,
11 (2014), 1646 – 1656. DOI:
http://dx.doi.org/10.1016/j.robot.2014.03.012 Special
Issue on Visual Control of Mobile Robots.

2. Luis F. Gonzalez, Glen A. Montes, Eduard Puig, Sandra
Johnson, Kerrie Mengersen, and Kevin J. Gaston. 2016.
Unmanned Aerial Vehicles (UAVs) and Artificial
Intelligence Revolutionizing Wildlife Monitoring and
Conservation. Sensors 16, 1 (2016), 97. DOI:
http://dx.doi.org/10.3390/s16010097

3. M. A. Gutiérrez, S. Nair, R. E. Banchs, L. F. D. Enriquez,
A. I. Niculescu, and A. Vijayalingam. 2015. Multi-robot
collaborative platforms for humanitarian relief actions. In
Humanitarian Technology Conference (R10-HTC), 2015
IEEE Region 10. 1–6. DOI:
http://dx.doi.org/10.1109/R10-HTC.2015.7391867

4. Jinjun Rao, Zhenbang Gong, Jun Luo, and Shaorong Xie.
2005. Unmanned airships for emergency management. In
IEEE International Safety, Security and Rescue Rototics,
Workshop, 2005. 125–130. DOI:
http://dx.doi.org/10.1109/SSRR.2005.1501243

5. R. Ritz, M. W. MÃijller, M. Hehn, and R. D’Andrea.
2012. Cooperative quadrocopter ball throwing and
catching. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 4972–4978. DOI:
http://dx.doi.org/10.1109/IROS.2012.6385963

6. Autonomy Lab Simon Fraser University. 2016.
ardrone_autonomy Parrot AR-Drone 1.0 and 2.0
quadrocopter ROS driver. (2016). https://
ardrone-autonomy.readthedocs.io/en/latest/index.html.

7. Oriol Vinyals, Alexander Toshev, Samy Bengio, and
Dumitru Erhan. 2014. Show and Tell: A Neural Image
Caption Generator. CoRR abs/1411.4555 (2014).
http://arxiv.org/abs/1411.4555

110

http://dx.doi.org/10.1016/j.robot.2014.03.012
http://dx.doi.org/10.3390/s16010097
http://dx.doi.org/10.1109/R10-HTC.2015.7391867
http://dx.doi.org/10.1109/SSRR.2005.1501243
http://dx.doi.org/10.1109/IROS.2012.6385963
https://ardrone-autonomy.readthedocs.io/en/latest/index.html
https://ardrone-autonomy.readthedocs.io/en/latest/index.html
http://arxiv.org/abs/1411.4555

	Introduction
	Description of the Architecture
	Web-based Graphical User Interface
	Dialog and System Manager
	Natural Language Understanding
	UAV Task Manager
	Visual Servoing with markers
	PID
	Environment Description Module

	Conclusions and Future Work
	Acknowledgments
	References 



